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� Abstract: Aims: Different chaotic APSO-based algorithms are developed to deal with high non-linear 

optimization problems. Then, considering the difficulty of the problem, an adaptation of these algo-

rithms is presented to enhance the algorithm. 

Background: Particle swarm optimization (PSO) is a population-based stochastic optimization tech-

nique suitable for global optimization with no need for direct evaluation of gradients. The method 

mimics the social behavior of flocks of birds and swarms of insects and satisfies the five axioms of 

swarm intelligence, namely proximity, quality, diverse response, stability, and adaptability. There are 

some advantages to using the PSO consisting of easy implementation and a smaller number of parame-

ters to be adjusted; however, it is known that the original PSO had difficulties in controlling the bal-

ance between exploration and exploitation. In order to improve this character of the PSO, recently, an 

improved PSO algorithm, called the accelerated PSO (APSO), was proposed, and preliminary studies 

show that the APSO can perform superiorly. 

Objective: This paper presents several chaos-enhanced accelerated particle swarm optimization meth-

ods for high non-linear optimization problems. 

Methods: Some modifications to the APSO-based algorithms are performed to enhance their perfor-

mance. Then, the algorithms are employed to find the optimal parameters of the various types of hys-

teretic Bouc-Wen models. The problems are solved by the standard PSO, APSO, different CAPSO, 

and adaptive CAPSO, and the results provide the most useful method. The sub-optimization mecha-

nism is added to these methods to enhance the performance of the algorithm. 

Results: Seven different chaotic maps have been investigated to tune the main parameter of the APSO. 

The main advantage of the CAPSO is that there is a fewer number of parameters compared with other 

PSO variants. In CAPSO, there is only one parameter to be tuned using chaos theory. 

Conclusion: To adapt the new algorithm for susceptible parameter identification algorithm, two series 

of Bouc-Wen model parameters containing standard and modified Bouc-Wen models are used. Per-

formances are assessed on the basis of the best fitness values and the statistical results of the new ap-

proaches from 20 runs with different seeds. Simulation results show that the CAPSO method with 

Gauss/mouse, Liebovitch, Tent, and Sinusoidal maps performs satisfactorily.�
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1. INTRODUCTION 

 System Identification of hysteric non-linear problems 
determines a set of suitable parameters for a model to match 
the experimental results with those of the model. In this issue, 
optimization provides engineers with a variety of techniques 
to deal with these problems. Due to its highly non-linear na-
ture, identification of Bouc-Wen systems constitutes a chal-
lenging problem [1, 2] which has been tackled by a variety of 
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methods, such as Gauss-Newton [3], modified Gauss-
Newton [4], Least squares [5], Simplex [6], Levenberg–
Marquardt [6, 7], extended Kalman filters [6, 8], reduced 
gradient methods [6], Genetic Algorithms (GAs) [9], real-
coded GAs [10], Differential Evolution [11, 12], adaptive 
laws [13], hybrid evolutionary algorithm [1], Charged Sys-
tem Search (CSS) [2], Particle Swarm Optimization (PSO) 
[14], a hybrid method based on the PSO and Big Bang-Big 
Crunch algorithms [15], and many others. These algorithms 
are known as optimization methods, and some of them [3, 4] 
are gradient-based methods. Like other classical methods, 
some issues are present in applying them for system identi-
fication problems. Depending on starting point, difficulty in 
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finding gradian information and trapping on local optimums 
are the most difficult of these algorithms. On the other hand, 
new meta-heuristic algorithms [1, 2, 9, 10, 14, 15], because 
of their nature, can be more useful for this problem; howev-
er, the performance of these algorithms is not constant, and 
it differs from one problem to the other one. This shows the 
requirement of modification on the standard form of these 
methods to specify them for system identification problems. 
For example, in one study [2], after adapting the CSS for 
identification problems, the final results were improved 
considerably compared to the standard CSS. Considering 
this point, this paper strives to present some modified, but 
simple algorithms to solve the identification problems.  

 Particle Swarm Optimization (PSO) is a population-
based stochastic optimization technique suitable for global 
optimization with no need for direct evaluation of gradients. 
The method, introduced by Kennedy and Eberhart [16], 
mimics the social behavior of flocks of birds and swarms of 
insects and satisfies the five axioms of swarm intelligence, 
namely proximity, quality, diverse response, stability, and 
adaptability [17]. The algorithm explores the search space 
by adjusting the trajectories of individuals, called “parti-
cles”, viewed as moving points in the search space. These 
particles are attracted towards the positions of both their 
personal best solution and the best solution of the swarm in 
a stochastic manner [18]. 

 Although there are some advantages to using the PSO 
consisting of easy implementation and a smaller number of 
parameters to be adjusted, it is known that the original PSO 
had difficulties in controlling the balance between explora-
tion and exploitation [19]. In order to improve this character 
of the PSO, recently, an improved PSO algorithm, called the 
accelerated PSO (APSO), was proposed, and preliminary 
studies show that the APSO can perform superiorly, com-
pared with genetic algorithms (GA) and the standard PSO 
[20]. Later, this method was utilized for optimum design of 
frame structures by Talatahari et al. [21]. The chaos-
enhanced accelerated particle swarm optimization (CAPSO) 
was proposed by Gandomi et al. [22] in which the important 
role of randomizing was played by using chaos theory.  

 Chaotic maps were known as the most efficient tools 
that could be used instead of random series [23, 24]. Since 
these maps do not enforce additional computations to the 
algorithm, as a result, using them can be useful. In this re-
gard, the main contribution of this paper is to present several 
chaos-enhanced accelerated particle swarm optimization 
methods for high non-linear optimization problems. Some 
modifications to these algorithms are performed to enhance 
their performance. The main idea is based on the Sub-
Optimization Mechanism (SOM) [2], in which the search 
space is divided into several small spaces, and finding opti-
mum solutions becomes easier. Then, the algorithms are 
employed to find the optimal parameters of the various 
types of hysteretic Bouc-Wen models. The problems are 
solved by the standard PSO, APSO, different CAPSO, and 
adaptive CAPSO, and the results provide the most useful 
method. 

 The rest of the paper is organized as follows: Section 2 
contains the materials and methods in which the problem 
definition, utilized methods, and mechanical Bouc-Wen 

models are presented. Section 3 contains the results and 
discussion. Section 4 contains the conclusion and policy 
implications. 

2. MATERIALS AND METHODS 

2.1. Problem Formulation 

 The mean square error (MSE) of the predicted response 

time history  (for any obtained parameters’ vector p) 

in comparison with the experimentally obtained response 

history  at each time step ti is usually considered as the 

objective function to be minimized as [2] Eq. (1): 

          

(1)

 

in which p is the vector of model’s parameters;  is the 
variance of experimental response time history; Σ represents 
the summation of its subsequent term (N discrete values); 
and N is the number of experimental data employed in the 
optimization process. It should be noted that the optimiza-
tion problem involves the minimization of the objective 
function when the parameters vector is varied between the 
following side constraints, see Eq. (2): 

pmin ≤ p ≤ pmax            (2) 

where pmin and pmax are the vectors that include the lower 
and upper bounds of the model parameters, respectively.  

2.2. Standard Particle Swarm Optimization (PSO) 

 The PSO algorithm, inspired by social behavior simula-

tion [16], is a population-based optimization algorithm that 

involves a number of particles that move through the search 

space, and their positions are updated based on the best po-

sitions of individual particles (called ) and the best of the 

swarm (called ) in each iteration. This matter is shown 

mathematically as the following equations (3, 4):  

         (3) 

             (4) 

where and represent the current position and the ve-

locity of the ith particle, respectively.  and  

represent random numbers between 0 and 1; is the best posi-

tion visited by each particle itself;  corresponds to the 

global best position in the swarm up to iteration k; ,  rep-

resent cognitive and social parameters, respectively. Ac-

cording to Kennedy and Eberhart [16], these two constants 

are set to 2 in order to make the average velocity change 

coefficient close to one. is a weighting factor (inertia 

weight) that controls the trade-off between global explora-

tion and local exploitation abilities of the flying particles. A 

larger inertia weight makes global exploration easier, while 

a smaller inertia weight tends to facilitate local exploitation. 

The inertia weight can be reduced linearly from 0.9 to 0.4 

during the optimization process [25]. 
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2.3. Accelerated Particle Swarm Optimization 

 The standard PSO uses both the current global best  

and the individual best, . The reason for using the indi-

vidual best is primarily to increase the diversity in the quali-

ty solutions. However, this diversity can be simulated using 

some randomness. Subsequently, there is no compelling 

reason for using the individual best unless the optimization 

problem of interest is highly non-linear and multimodal 

[20]. 

 A simplified version that could accelerate the convergence 

of the algorithm uses the global best only. Thus, in the Accel-

erated Particle Swarm Optimization (APSO) [20], the veloci-

ty vector is generated by a simpler formula as Eq. (5): 

           (5) 

where randn is drawn from N(0, 1) to replace the second 

term. The update of the position is simply like Eq. (4). In 

order to increase the convergence even further, we can also 

write the update of the location in a single step, as Eq. (6) 

            (6) 

 This simpler version will give the same order of conver-

gence [1]. Typically, α = 0.1L -0.5L, where L is the largest 

of the search space for each variable, while β = 0.2 -0.7 is 

sufficient for most applications. It is worth pointing out that 

the velocity does not appear in Eq. (6), and there is no need 

to deal with the initialization of velocity vectors. Therefore, 

the APSO is much simpler. Comparing with many PSO var-

iants, the APSO uses only two parameters, and the mecha-

nism is simple to understand. A further improvement to the 

accelerated PSO is to reduce the randomness as iterations 

proceed. In our implementation, we use Eq. (7) [22] 

             (7) 

where t�[0, tmax] and tmax is the maximum number of itera-
tions. 

2.4. Chaotic APSO  

 As it is presented in Eq. (6), the main parameter of the 
APSO is the learning parameter, β. The parameter β charac-
terizes the variations of the global best attraction, and its val-
ue is crucially important in determining the speed of the con-
vergence and the behavior of APSO. Based on a parametric 
study, by varying b from 0 to 1 by a step of 0.1, we found that 
b should be in [0.2, 0.7] for most problems [22]. In the stand-
ard APSO, there is no need to keep β constant. In fact, a vary-
ing β may be advantageous, which may also lead to the 
speedup of convergence of the algorithm. As all chaotic maps 
are normalized, the variations of a chaotic map are always 
between [0, 1]. Therefore, chaotic maps can be used to tune 
parameter β, and such chaotic-enhanced APSO is referred to 
as the chaotic APSO (CAPSO). Different chaotic maps are 
utilized for CAPSO, as summarized in Table 1. 

 For presenting more efficient algorithms, the Sub-

Optimization Mechanism (SOM) [2] is added to the CAPSO 

methods. This mechanism is based on the principles of the 

finite element method that requires division of the problem 

domain into many sub-domains, and each domain is called a 

finite element. These element patches are considered instead 

of the main domain. Similarly, SOM divides the search 

space into sub-domains and performs an optimization pro-

cess into these patches, and then based on the resulting solu-
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tions, the undesirable parts are deleted. The remaining space 

is divided into smaller parts for more investigation in the 

next stage. This process continues for determining numbers 

or until the remaining space gets less than the required accu-

racy or specified value [2]. 

 For parameter identification of the Bouc-Wen model for 

MR dampers, the adaptive CAPSO method utilizes the idea 

of the SOM as the following steps: 

 Level 1: Employing the standard algorithm considering 

the defined search domain to find the optimum results. In 

this step, the search process can be circumscribed to only 

100 iterations. 

 Level 2: Determining a new search domain for each 

variable using the optimum results obtained in the previous 

level. Using the information obtained in the previous search 

(Xopt), it is possible that the search domain becomes defined 

again more accurately. In this way, the previous optimum 

result is considered as the center point of the domain, and 

the domain will be as  Eq. (8): 

          (8) 

where  is the domain limit and is set to 0.1 for the next 

repetitions. 

 Level 3: Repeating above levels for definite times (three 

times in this paper). 

 Fig. (1) presents a simple flow-chart of using CAPSO 

for the defined problem.  

2.5. Mechanical Bouc-Wen Models for MR Dampers 

 The standard Bouc-Wen model [26] and a modified one 
were considered in this paper to be capable of reproducing 
the factual non-linear hysteretic behavior of MR dampers. 

2.5.1. Standard Bouc-Wen Model 

 Fig. (2a) illustrates the simple Bouc-Wen model for MR 
dampers. In this case, the non-linear force of the damper is 
calculated from Eq. (1) as follows Eq. (9) [26]: 

          (9)  

where,  is the Bouc-Wen model parameter related to the 

MR material yield stress; 
 
and  are spring stiffness and 

dashpot damping coefficient, respectively; and  is hyster-

etic deformation of the model which is defined by the fol-

lowing equation (9): 

        (10) 

in which, , and 
 
are the Bouc-Wen model parameters.  

 For achieving optimal performance of control systems 

equipped with MR dampers, the applied voltage to the cur-

rent driver must be varied according to the measured feed-

back at any moment to change the damping force. Thus, for 

accounting this accordance, the coefficient , damping 

coefficient , and stiffness  in Eq. (9) are defined as a 

linear function of the efficient voltage as given by the fol-

lowing equations (11, 12) [27]: 

,  and 

             (11) 

 To accommodate the dynamics involved in the MR fluid 

reaching rheological equilibrium, the following first-order 

filter is employed to calculate efficient voltage,  by Eq. 
(12) [27]: 

          (12) 

where  is the applied voltage for the current generation. 
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Fig. (1). Flow-chart of applying the CAPSO algorithm. (A higher resolution / colour version of this figure is available in the electronic copy 
of the article). 
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2.5.2. Modified Bouc-Wen Model 

 A modified version has been proposed to better predict 
the roll-off in MR damper force for the region with low ve-
locities. This system is illustrated in Fig. (2b), and generated 
force by MR damper is given by Eq. (13). 

    (13) 

 In this case, hysteretic displacement is given by Eq. (14) 

        (14) 

 According to (Fig. 2b), is defined by the following 
equation (15):  

       (15) 

 To determine a comprehensive model that is valid for 
fluctuating magnetic fields, the parameters , 

 
and 

 
in 

Eqs. (13) and (15) are defined as a linear function of the 
efficient voltage, , as given by Eq. (8), see Eq. (16) [27]:  

,   

and          (16) 

in which
  is related to applied voltage through Eq. (12). 

3. RESULTS AND DISCUSSION 

 The standard Bouc-Wen model needs twelve parameters 

( , , , , , , , , , , , ) 

while 14 ones ( , , , , , , , , , 

, , , , ) are sufficient for the modified version.  

 Two numerical examples for the standard and modified 
Bouc-Wen models of dampers are optimized utilizing the 
proposed APSO method. Table 2 presents the used experi-
mental data [2]. The sample displacement and control volt-
age history are applied simultaneously to the MR damper, 
and the assumed experimental results for the standard model 
are shown in Fig. (3) [27]. To fulfill this aim, a series of 
realistic Bouc-Wen model parameters for a prototype 
1000kN MR damper is used to numerically generate the 
experimental data. It has been corroborated that the simple 
Bouc-Wen model suffers from parameter redundancy, and 

multiple sets of parameters could be the solution of a speci-
fied problem resulting in similar fairly low MSE.  

 The device is assumed to be in a real operating condition 
that an MR damper will experience while it is employed in a 
semi-active control system of a building. In other words, to 
accurately evaluate the performance of the identification 
algorithm, experimental data are obtained due to just one 
representative test of random inputs (displacement and volt-
age) to the damper. The input control signal, piston move-
ment, and response of the MR damper for the simple Bouc-
Wen model is determined from numerical simulation of a 3-
storey case-study building in which a direct modulating con-
troller was designed in order to control the dampers’ force 
and mitigation of structural responses due to El Centro 
Earthquake, and for the modified model it is determined 
from numerical simulation of a 11-storey example subjected 
to El Centro earthquake controlled using clipped-optimal 
control algorithm. The sample displacement and control 
voltage history are applied simultaneously to the MR damp-
er. 

 The statistical results using 7 variants of the presented 
algorithms, 7 adaptive methods, the standard PSO, and the 
APSO are summarized in Tables 3 and 4 for the standard 
and modified Bouc-Wen models, respectively. Each algo-
rithm is utilized 20 times with different initial seeds. For the 
standard model, many of the adaptive chaotic-based APSO 
methods can find suitable results successfully. However, the 
best solutions found by Gauss/mouse, Sinusoidal, Liebo-
vitch, and Tent map are better than the best solutions found 
by the other techniques. Also, it can be seen that the average 
searching quality of the adaptive CAPSO algorithm with 
Gauss/mouse and Tent maps is better than those of other 
methods. In the modified model, the best results are ob-
tained by the adaptive CAPSO methods with Gauss/mouse, 
Liebovitch, Tent and Sinusoidal maps, respectively. The 
adaptive CAPSO with Gauss/mouse map has the best per-
formance regarding the standard deviation. 

 Table 5 presents the best obtained results of the adaptive 
CAPSO methods for the simple model. From the table, it 
comes that many of chaotic-based developed algorithms 
could find a good estimation of optimal solutions for the 
parameters of standard Bouc-Wen model. The achieved 
results for modified Bouc-Wen model reported in Table 6 
similarly reveal that the proposed optimization methods 
outperform the original and improved PSO algorithms.  
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a)        b) 
Fig. (2). The phenomenological Bouc-Wen model of MR damper schematic a) simple, b) modified. 
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Table 2. Parameters of Bouc-Wen models for a 1000 kN MR damper [2]. 

Parameter Unit 
Stanard B-W Model Values  

(9 Parameters) 
Modified B-W Model Values  

(13 Parameters) 

x0 m - -

γ m-2 141 164 

β m-2 141 164 

A - 2075 1107.2 

n - 2 2 

 kN/m 26 46.2 

 kN/m/V 29.1 41.2 

c0a kN.s/m 105.4 110 

c0b kN.s/m/V 131.6 114.3 

c1a kN.s/m - 8359.2 

c1b kN.s/m/V - 7482.9 

k0 kN/m - 0.002 

k1 kN/m - 0.0097 

η s-1 100 100 

 

 
a)        b) 

 

c) 
Fig. (3). Numerically obtained experimental data for the standard Bouc-Wen model of a 1000 kN MR damper under the control system 

simulation [25], a) Force-Time, b) Force-Velocity, c) Voltage-Time. (A higher resolution / colour version of this figure is available in the 
electronic copy of the article). 

aϕ
bϕ
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Table 3. Statistical results for the standard Bouc-Wen models with different methods. 

- Best Mean Worst Std. Dev. 

Standard PSO, [15] 5.15E-02 1.39 E -01 2.73 E -01 8.12 E -02 

ICA, [27] 6.28E-03 1.26 E -01 7.01 E -01 3.36 E -01 

EICA, [27] 9.16E-04 9.08 E -02 2.36 E -01 9.66 E -02 

APSO 2.67 E -03 8.65 E -02 2.25 E -01 7.52 E -02 

CAPSO with - - - - 

Gauss/mouse map 2.99 E -04 7.48 E -02 3.26 E -01 1.10 E -01 

Circle map 9.49 E -03 1.43 E 00 17.91 E 00 1.27 E 00 

Logistic map 3.78 E -03 1.27 E 00 3.51 E 00 1.45 E 00 

Sinusoidal map 3.09 E -04 1.11 E -01 5.66 E -01 1.19 E -01 

Tent map 5.91 E -04 7.85 E -02 4.44 E -01 1.90 E -01 

Liebovitch map 3.59 E -04 4.25 E -02 5.21 E -01 1.06 E -01 

Sine map 7.77 E -04 9.73 E -02 8.12 E -01 4.63 E -01 

Adaptive-CAPSO with - - - - 

Gauss/mouse map 1.200 E -04 4.104 E -2 1.85E-01 6.36 E -02 

Circle map 8.103 E -03 8.442 E -1 9.98 E 00 9.97 E -01 

Logistic map 1.634 E -03 9.680 E -1 2.96 E 00 8.65 E -01 

Sinusoidal map 2.024 E -04 8.610E-2 2.46 E -01 7.22 E -02 

Tent map 3.839 E -04 5.660E-2 1.69 E -01 6.85 E -02 

Liebovitch map 2.478 E -04 2.049E-2 2.56 E -01 9.52 E -02 

Sine map 5.255 E -04 7.045 E-2 5.28 E -01 3.09 E -01 

 
Table 4. Statistical results for the modified Bouc-Wen models with different methods. 

- Best Mean Worst Std. Dev. 

Standard PSO, [15] 1.08E-2 6.70 E -1 1.69 E 00 6.93 E -01 

ICA, [27] 1.05 E -02 5.68 E -01 1.03 E 00 5.65 E -01 

CICA, [27] 7.78 E -04 3.69 E -01 9.65 E -01 2.23 E -01 

APSO 2.658 E -3 5.35 E -01 8.89 E -01 5.68 E -01 

CAPSO with - - - - 

Gauss/mouse map 7.55 E -04 1.482 E -01 1.27 E 00 8.73 E -02 

Circle map 8.44 E -03 2.19 E 00 2.23 E 00 1.46 E 00  

Logistic map 2.03 E -03 2.08 E 00 1.21 E +01 1.75 E 00 

Sinusoidal map 5.909 E -03 6.83 E -01 1.06 E 00 0.101 E -01 

Tent map 1.152 E -03 5.22 E -01 1.35 E +01 0.167 E -01 

Liebovitch map 6.13 E -04 5.13 E -01 9.17 E -01 0.141 E -01 

Sine map 4.599 E -3 1.12 E 00 1.18 E 00 0.996 E -01 

Adaptive-CAPSO with - - - - 

(Table 4) Contd…. 



The Chinese Journal of Artificial Intelligence, 2022, Vol. 1, No. 1       e200521193450 Talatahari et al. 

 98 

- Best Mean Worst Std. Dev. 

Gauss/mouse map 3.343 E-4 8.72 E -2 6.93 E -1 6.981 E -02 

Circle map 6.299 E -3 1.163 E +0 1.781 E 0 9.067 E -01 

Logistic map 1.032 E -3 1.065 E +0 6.689 E 0 1.188 E +00 

Sinusoidal map 4.421 E -3 4.415 E -1 8.59 E -1 7.459 E -02 

Tent map 6.583 E-4 4.594 E -1 7.00 E 0 9.168 E -02 

Liebovitch map 4.088 E -4 4.472 E -1 6.80 E-1 8.932 E -02 

Sine map 2.389 E -3 8.968 E -1 9.88 E -1 6.431 E -01 

 

Table 5. Parameter sets found for standard B-W model. 

Parameter Unit CAPSO with 

- - Gauss/mouse Circle Logistic Sinusoidal Tent Liebovitch Sine 

γ m-2 154.76 151.29 141.98 163.46 155.51 158.89 158.50 

β m-2 142.59 142.59 142.22 141.28 148.44 145.7 150.58 

A - 2058.3 2145.0 1947.7 2100.9 2101.8 1945.5 2103.3 

n - 1.99 2.02 1.93 1.92 1.99 1.90 1.97 

 kN/m 27.97 25.68 27.09 27.20 26.27 27.32 25.45 

 kN/m/V 29.61 28.54 30.87 29.15 29.38 29.63 29.16 

c0a kN.s/m 99.96 94.76 92.00 102.18 105.81 96.61 97.61 

c0b kN.s/m/V 131.26 131.10 131.15 131.23 131.21 131.13 131.08 

η s-1 100.28 100.52 99.70 100.23 100.20 100.06 98.88 

 

Table 6. Parameter sets found for modified B-W model. 

- - Adaptive CAPSO with  

Parameter Unit Gauss/mouse Circle Logistic Sinusoidal Tent Liebovitch Sine 

γ m-2 162.27 153.78 160.81 154.62 154.98 156.94 157.48 

β m-2 162.26 160.08 158.59 154.4 168.87 159.32 165.45 

A - 1152.61 1126.91 1132.42 1244.605 1180.774 1127.862 1090.616 

n - 2.01 1.98 2.06 2.03 1.95 1.91 2.00 

 kN/m 45.44 45.91 45.01 45.59 46.66 44.88 46.56 

 kN/m/V 40.54 35.92 42.11 40.19 39.87 36.87 38.98 

c0a kN.s/m 112.62 106.13 109.03 105.71 111.08 112.3 101.33 

c0b 
kN.s/m/

V 113.96 114.67 113.71 113.01 114.66 114.11 112.68 

c1a kN.s/m 8035.5 8345.5 8213.9 8315.3 8247.2 8474.4 8429.8 

c1b 
kN.s/m/

V 7548.8 7536.1 7451.3 7386.6 7464.3 7472.3 7403.8 

k0 kN/m 0.0021 0.0019 0.002 0.0019 0.0021 0.0018 0.002 

k1 kN/m 0.0087 0.0095 0.0094 0.0097 0.0099 0.0099 0.0101 

η s-1 100.24 100.19 101.08 100.23 101.32 101.21 100.12 

 

aϕ

bϕ

aϕ
bϕ
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Table 7. The W test results (p-values). 

Main Algorithm Example Data Type 
Alternative Algorithms 

PSO APSO ICA EICA 

CAPSO 

Simple B-W model 

Min. 1.258E-17 7.15E-12 6.17E-05 2.95E-04 

Mean 5.32E-14 2.22E-11 4.49E-06 4.78E-04 

Std. 5.66E-12 3.17E-9 6.55E-04 8.25E-03 

Modified  

B-W Model 

Min. 7.74E-10 7.63E-05 6.99E-04 1.67E-02 

Mean 2.35E-09 9.34E-04 3.59E-05 3.59E-03 

Std. 3.45E-08 6.90E-03 9.32E-03 3.10E-02 

 

Table 8. The K-W test results (mean of the ranks) 

Rankings�
Min.� Mean� Std.�

Algorithms� Mean of Ranks� Algorithms� Mean of Ranks� Algorithms� Mean of Ranks�

1 CAPSO 320.23 CAPSO 312.12 CAPSO 300.52 

2 EICA 360.11 EICA 333.22 APSO 315.22 

3 APSO 362.22 APSO 352.36 EICA 316.52 

4 ICA 378.56 ICA 380.25 PSO 370.23 

5 PSO 400.52 PSO 445.23 ICA 460.44 

Chi-sq. 153.15 140.52 183.35 

Prob>Chi-sq. 5.32E-28 3.25E-23 5.12E-33 

 

 Also, to evaluate the performance of the presented algo-
rithm, a statistical analysis has been conducted in which the 
Wilcoxon signed-rank (W) test is conducted for comparing 
the mean ranks of different metaheuristics and the Kruskal–
Wallis (K-W) test is conducted for comparing the overall 
rankings of the metaheuristics by considering the mean of 
the ranks of algorithms. The Wilcoxon (W) singed-rank test 
is a statistical nonparametric test for examining the differ-
ences between different samples in a one-by-one manner. 
The related p-values of this test for different methods are 
presented in Table 7. The Kruskal-Wallis (K-W) test is a 
non-parametric algorithm for testing whether or not differ-
ent statistical samples are originated from the same distribu-
tion. It is used for comparing two or more independent sam-
ples of equal or different sample sizes. This test provides the 
mean of the ranks for multiple sets of statistical data which 
are considered for comparing analysis. The results of the K-
W test are presented in Table 8. Based on the statistical re-
sults, the superiority of the new algorithm is proved. 

SUMMARY AND CONCLUSION 

 A new identification method for non-linear hysteretic 
Bouc-Wen models of MR fluid dampers is introduced by the 
different Chaotic Accelerated Particle Swarm Optimization 
methods as the main contribution of the paper. Seven differ-
ent chaotic maps have been investigated to tune the main 
parameter of the APSO. The main advantage of the CAPSO 

is that there are a fewer number of parameters, compared 
with other PSO variants. In CAPSO, there is only one pa-
rameter to be tuned using chaos theory. Also, the sub-
optimization mechanism is added to these methods to en-
hance the performance of the algorithm. 

 To adapt the new algorithm for susceptible parameter 
identification algorithm, two series of Bouc-Wen model 
parameters containing standard and modified Bouc-Wen 
models are used. Performances are assessed on the basis of 
the best fitness values and the statistical results of the new 
approaches from 20 runs with different seeds. Simulation 
results show that the CAPSO method with Gauss/mouse, 
Liebovitch, Tent, and Sinusoidal maps performs satisfactori-
ly.  
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