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� Abstract: Aims: The aim of this study is to perform short-term load forecasting. 

Background: Short-term load forecasting plays a key role in power dispatching. It provides basic data 

for basic power generation planning and system safety analysis so that the power dispatching work is 

more practical and the power generation efficiency is higher.  

Objective: The aim of this study is to ensure the safe operation of the electricity market and relieve the 

pressure of supply and demand. 

Methods: In this paper, the SVR model is used for short-term load prediction. 

Results: The SVR model has the advantage of minimizing the structural risk and has good generaliza-

tion performance for the predicted object. At the same time, the global optimization is ensured, a lot of 

mapping calculation is reduced, the actual risk is reduced, and the prediction performance is improved. 

Conclusion: The target model has higher forecasting accuracy than other forecasting models and can 

effectively solve the problems of the power market.�
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1. INTRODUCTION 

 In recent years, due to the establishment and develop-
ment of domestic and foreign power markets, the prediction 
of power load has gradually become the main module of the 
economization of power system operation and the construc-
tion of smart grid [1], and it is also an important research 
topic in the field of power. Accurate load forecasting can 
arrange the start-up and shut-down of generator sets and the 
maintenance plan of power transmission and transformation 
equipment in the power system so as to meet the social 
needs, reduce unnecessary energy waste and reduce costs. It 
would improve economic and social performance. Especial-
ly in the case of power management marketization, power 
load forecasting is particularly important. Through accurate 
load prediction and precise demand response, strategies can 
be developed to reduce peak loads and electricity consump-
tion, and integrate distributed energy resources [2, 3]. 
Therefore, it has brought significant economic benefits to 
the local economy [4]. In today's power big data environ-
ment, aiming at the complexity and uncertainty of power 
systems [5], there are also many research works on power  
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load forecasting in the market. At present, common tradi-
tional models include artificial neural networks, empirical 
mode decomposition, grey theory [6], multiple linear regres-
sion, time series [7], random forest, and decision tree. How-
ever, the prediction accuracy and real-time demand of these 
methods cannot meet the need of the economic market be-
cause of the fuzziness and non-linearity of power load. Ac-
cording to the complexity of power load, Mohamed  et al. 
[8] proposed a probabilistic deep convolutional neural net-
work method, which can predict load in the form of quan-
tiles. Case studies have shown that this method has good 
performance. Ma  et al. [9] proposed an interval prediction 
method based on optimized machine learning and neural 
network, which not only simplified the prediction process 
and shortened the processing time, but also significantly 
improved the efficiency, flexibility, and accuracy of the 
prediction. Fan  et al. [10] proposed a multiple target depth 
based on the empirical mode decomposition belief network 
prediction method (EMD - MODBN); the test results have 
shown that this method has obvious advantages in predict-
ing accuracy and generalization ability. Qiu  et al. [11] pro-
posed a short-term power load forecasting method with cor-
rection error by dynamic modal decomposition, which has 
the advantage of good stability. However, the above-
mentioned methods have limitations and greater risks, and 
the mapping calculation is more complex [12-14]. The Time 
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Series model proposes a combination method of short-term 
load prediction based on fuzzy time series and convolutional 
neural network to determine and extract relevant important 
parameters. Various experiments on test data sets proved the 
effectiveness of this method, but the steps were relatively 
complex. Grzegorz  et al. [15] proposed a univariate short-
term power load prediction model based on linear regression 
and compared this method with ARIMA, exponential 
smoothing, and neural network models and found that it had 
a good prediction effect. Wu  et al. [16] proposed a new 
short-term power load forecasting method based on the 
LRD-regression comprehensive moving average FARIMA 
model and tested different forecasting models. The results 
showed that the FARIMA model and the improved optimi-
zation algorithm have high accuracy and effectiveness for 
short-term power load prediction. Gopal  et al. [17] pro-
posed a robust framework for short-term power load predic-
tion with test cases involving five commercial buildings 
with five different building types. The load prediction re-
sults showed that the deep learning algorithm RNN im-
proved the performance of load prediction. Shahzad  et al. 
[18] proposed a prediction method based on LSTM, which 
has the potential to further improve the prediction accuracy. 
Ahmad  et al. [19] proposed a random forest power load 
prediction method, which calculated the optimal parameters 
of the support vector machine based on the least square 
method. Finally, an example showed that the method has 
fast operation speed and high prediction accuracy. Guo  et 
al. [20] discussed three commonly used machine learning 
methods for load prediction, namely support vector machine 
method, random forest regression method, and short-term 
memory neural network method. Combined with the ad-
vantages of these methods, a fusion prediction method and 
data processing technology were proposed to improve the 
prediction accuracy. 

 To sum up, power short-term load data has the character-
istics of transient, non-stationary, and randomness. In this 
paper, the SVR model was used for short-term load fore-
casting and compared with the ARIMA model after EMD. 
The main research contents are as follows: (1) Firstly, the 
data were divided into the training set and validation set, 
and then the advantages of linear separability and structural 
risk minimization of support vector machine were used as 
the basis of training set prediction. (2) The EMD method 
was used to decompose the original power load data to gen-
erate IMF, which was divided into three components ac-
cording to its characteristics of high, medium, and low fre-
quency. Then, it was combined into two parts (M1 and M2) 
for prediction by the time series method, and the predicted 
values were obtained, respectively. (3) Then, the prediction 
error was calculated for the original value and the predicted 
value, and the model with higher prediction accuracy was 
selected by comparing the evaluation indexes. By compar-
ing the prediction effects of SVR and EMD-ARIMA in dif-
ferent regions, this paper explains which model is more 
suitable for revealing the mechanism of power behavior. 
The second part introduces the support vector machine re-
gression SVR model, EMD method, and ARIMA in the time 
series model in detail. The third part takes the power load 
data of three regions (CAPITL, CENTRL and DUNWOD) 
as an example to establish the corresponding model for 

short-term load prediction and analysis. The fourth part 
compares the predicted results of the model and then draws 
the corresponding comparison chart between the predicted 
value and the actual value for analysis. Finally, the regional 
differences of the three cities (CAPITL, CENTRL and 
DUNWOD) are compared. The fifth part briefly summariz-
es the research results of this paper. 

2. MATERIALS AND METHODS�
2.1. Support Vector Regression Model 

 Support Vector Machine (SVM) is a set of learning algo-
rithms proposed at the end of the 20th century, which can 
efficiently solve practical problems such as small samples, 
non-linearity, and high dimensions [21]. From an ideologi-
cal point of view, SVM simplifies common issues such as 
classification and regression. A few support vectors deter-
mine the final decision function of SVM, and the complexi-
ty of calculation depends on the support vectors rather than 
the whole sample space, thus avoiding the "dimension disas-
ter".  

 The specific steps of the SVR model are as follows:  

1. Given the training sample set: , 

where ix  is the input vector (including factors af-

fecting the output), yi  is the target output and n  is 

the number of samples contained in the sample set. 

In real life, we often have nonlinear problems; 

therefore, we need to use mapping function φ  to 

map the sample points to a high-dimensional 

space ( ( )x xφ→ ). 

2. In the sample space, the partitioning hyperplane can 
be described by the following linear Equation (1): 

             
(1) 

  
is the normal vector, which deter-

mines the direction of the hyper-plane; and b is the dis-

placement term, which determines the distance between the 

hyper-plane and the origin. 

3. Assuming that the hyper-plane  can classify the 

training samples correctly, that is for , if 

yi = +1,  then ω T xi + b > 0,  otherwise ω T xi + b > 0  

(Equation 2). Therefore, 
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4. Fig. (1) shows that the distance between the two dot-

ted lines in the SVR soft segmentation hyper-plane is
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(3)
 

 The above constraint (Equation 3) is equivalent to the 
following constraint (Equation 4): 

        
(4)

 

 Machine (SVM). 

 

Fig. (1). SVR soft segmentation hyper-plane. (A higher resolution / 
colour version of this figure is available in the electronic copy of 
the article). 

 
 The SVR can be represented by Equation (5): 

           
(5)

 

Where C is the regularization constant and  (Equation 6) 
is the insensitive loss function of  as shown in the  

Figure (1): 

           

(6)

 

 By introducing the relaxation variables,  SVR 
can be expressed as follows in Equation (7): 

          

(7) 

 The corresponding SVR modeling flow chart is shown in 
Fig. (2).  

2.2. EMD  

 Empirical Mode Decomposition (Empirical Mode De-
composition, the EMD) method is based on the time scale 
characteristics of the data itself for signal decomposition. It 
does not need to set any basis function in advance to process 
non-stationary and nonlinear data. It is suitable for analyz-
ing nonlinear and non-stationary signal sequences and has a 
high signal-to-noise ratio. The EMD decomposition process 
is as follows: 

I. Finding all the extreme points of the original data 
sequence X(t), calculating the upper and lower enve-

lopes and denoting its mean value as ml. By using h1 
= X(t)-ml. A new low-frequency data sequence h1 is 
obtained.  

II. Repeating the above process so that the first 
eigenmode function component c1, which represents 
the highest frequency component of the signal data 
sequence, can be obtained. 

III. Subtracting c1 from X(t), which gives a new data 
sequence R1, and removing the high-frequency com-
ponents that are decomposed. This is repeated until 
the data sequence cannot be decomposed, and this 
sequence is the mean of X(t). 

 

Fig. (2). Flow chart of SVR modeling. (A higher resolution / col-
our version of this figure is available in the electronic copy of the 
article). 

 

2.3.�Model Establishment 

 In this paper, the load series data of three regions are 
studied, and the predicted values obtained by the correlation 
prediction method are used for correlation analysis to reflect 
the regional differences. The steps are as follows: 

1. The data is divided into a training set and a valida-
tion set. The advantages of linear separability of sup-
port vector machine and structural risk minimization 
are used as the basis of training set prediction, and 
the predicted value Y1 is obtained.  

2. The EMD method is used to decompose the original 
power load data to generate IMF, which is divided 
into three components. According to its characteris-
tics, it is divided into three components high, medi-
um and low frequency. 

3. Then, the prediction error is calculated for the origi-
nal value and the predicted value, and the model with 
higher prediction accuracy is selected by comparing 
the evaluation indexes. 

 Fig. (3) presents the flow chart of the short-term load 

forecast based on the SVR model, clearly showing the 

above steps. 

3. NUMERICAL STUDY 

3.1. Data Sets and Evaluation Indexes�
 The power data was obtained from the 2016 New York 
Energy Market Operator's website and contained one-hour 
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load data for three districts (CAPITL, CENTRL and 
DUNWOD). This power load data is for the first week of 
January and contains 576 power load data. The aggregate 
time is an hour of data from zero hours on January 1, 2016. 
In order to evaluate the prediction performance of the mod-
el, the error-index and specific test methods were selected to 
test and evaluate the model. The formula of the four evalua-
tion functions is shown as follows in Equations (8-11): 

            
(8)

 

           
(9)

 

          
(10)

 

          
(11)

 

3.2. Forecasting Model Analysis 

3.2.1. SVR Modeling  

 In order to predict the data in the next 24 hours, support 
vector machine regression was firstly used for prediction. 
The data were divided into the training set and verification 
set, and then the properties of linear separability and struc-
tural risk minimization of support vector machine were used 
for modeling. The steps are as follows: 

1. SVR modeling was carried out for the training set. 
After a large number of experiments, the data of the 
training set were finally divided into 18 columns, and 
the linear regression relationship was established 
with the data of the training set. 

2. According to the theory of structural risk minimiza-
tion, the established linear regression relationship 
was used for short-term load prediction, and the next 
24 hours data were predicted. 

3. The predicted value obtained in the next 24 hours 

was compared with the original power load value, as 

shown in Fig. (4). 
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Fig. (3). Flow chart of short-term load forecasting based on the SVR model. (A higher resolution / colour version of this figure is available in 
the electronic copy of the article). 
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 It is clearly shown in Fig. (4) that the predicted results of 
SVR present a good fitting effect on the training set, and the 
predicted values of the verification set can also be well-
fitted with the actual data, which can obtain a higher fitting 
accuracy. The parameter MSE of the fitness curve is shown 
in Table 1. 

 Therefore, the fitting accuracy of SVR is high from the 
fitting diagram and the fitness parameters between the actual 
value and the predicted value. Fig. (5) analyzes the fitting 
accuracy of the actual value and predicted value in different 
regions by combining the regional differences of the three 
regions. 

 Fig. (5) clearly shows how the actual and predicted val-
ues fit for the three regions (CAPITL, CENTRL and 
DUNWOD). It can be observed from the electricity con-
sumption of 24 hours a day that the predicted value and the 
actual value have a high degree of good fit. In addition, it is 
also found that the electricity consumption between 0 and 5 
is the lowest in a day, which has an influence on working 
hours and other factors. To elaborate, the industrial and 
household electricity consumption during this period is tak-
en as a "rest" state. At the time of 6, the power load shows a 
gradually rising trend, with the peak sustaining till 8 o 
'clock. After that, it begins to change and reaches a mini-
mum at 14 o 'clock; this time may be a lunch break load. 
These changes continue until 20 o 'clock, and again at 20 o 

'clock, reach the peak of the power load. This period indi-
cates a maximum load of industrial and residential electrici-
ty use and is termed as a "crazy" state. Then, the electricity 
load from 21 o 'clock to 24 o 'clock declines sharply, at 0 o 
'clock to 5 o 'clock, it reaches the equilibrium level, where 
industrial electricity use is in a "stagnant" state.  

3.2.2. ARIMA Modeling  

 Through the EMD method, the training data set of the 
original series of power load was decomposed into 6 IMF, 
and 1 residual item (IMF7), and the seven IMFs were divid-
ed into three components: high, medium, and low frequen-
cy. The first IMF (IMF1) is a high-frequency sequence, re-
flecting the randomness of the power load. If the residual 
term IMF7 fluctuates steadily, that is, a low-frequency se-
quence, it reflects the overall trend of power load. The de-
tails are shown in the trend chart for EMD decomposition 
variables in Fig. (6). 

 As can be seen from (Fig. 6), all IMFs variables are ar-
ranged in order from high to low frequency, and the fluctua-
tion frequency becomes slower. The fluctuation frequency 
of IMF1 is faster than that of other trend items. The fluctua-
tion frequency and amplitude of IMF2-7 show a decreasing 
change, which reflects the greater influence of the influenc-
ing factors of power load. The fluctuation of IMF2-6 is very 
cyclical; therefore, the five terms of IMF2-6 IMF1 and 

 

Fig. (4). Fitting diagram of predicted SVR value and actual value. (A higher resolution / colour version of this figure is available in the elec-
tronic copy of the article). 

 

Table 1. MSE parameters of fitness curve.  

- Parameter Termination of Algebra Population Quantity Best c g CVmse 

Numerical value c1=1.5 c2=1.7 100 20 100 0.943 0.0071 
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IMF7 are combined. Time series analysis was carried out on 
the processed data. 

 According to the autocorrelation graph and partial auto-
correlation graph after difference and the order, the determi-
nation principle is shown in Table 1. The values of p and q 
were determined to establish the ARIMA (p, d, q) model, 
and then the ARIMA model was determined by the AIC 
minimum principle. The optimal ARIMA model established 
after sequence decomposition of the two regions is shown in 
Table 2. 

 The ARIMA model and test indicators (P-value and 
AIC) of IMF1 and IMF7 combination sequence M1 and 
IMF2-6 combination sequence M2 in three regions 
(CAPITL CENTRL and DUNWOD) are clearly shown in 
Table 3. According to the optimal model selected by P-
value and indicator, AIC as the principle of minimum in-
formation, and 24 predicted values in the future were pre-
dicted. The predicted values of the two combination se-
quences were linearly combined through extensive calcula-
tions in multiple attempts. Finally, the weighted predicted 

 

Fig. (5). Fitting SVR prediction for three regions. (A higher resolution / colour version of this figure is available in the electronic copy of the 
article). 

 

 

Fig. (6). Trend diagram of EMD decomposition variables. (A higher resolution / colour version of this figure is available in the electronic 
copy of the article). 
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values were obtained. The fitting results of the predicted 
value and true value of ARIMA are shown in Fig. (7).

 Fig. (7) shows the fitting effect of the predicted value 
and the actual value of the EMD decomposed data based on 
ARIMA. The sequence is New York City's electric power 
load and the influencing factors are complicated, which are 
closely related to the local economy and policies as well as 
the weather and other natural conditions. Although the time 
sequence method considers the dependence on the time se-
ries and the interference of random fluctuations, it does not 
have good generalization capability and could not guarantee 
global optimization. Therefore, it can be seen from the fit-
ting graph of predicted value and actual value that the over-
all trend is consistent, and the problem of fitting accuracy is 
not significant. 

4. COMPARISON OF MODELS, RESULTS 
ANALYSIS, AND DISCUSSION 

 The model is applied to predict the data and then com-
pared with the original power load data to verify the effi-
ciency of the model. In order to further reflect the superiori-
ty of this method, this paper chooses the ARIMA model to 
compare and analyze the power loads of three regions so as 
to understand the power consumption between regions in 
depth. 

4.1. Selection and Analysis of Comparative Models 

 In this paper, the power load data of three districts 
(CAPITL, CENTRL and DUNWOD) from 0:00 on January 
1, 2016, to 23:00 on January 8, 2016, were considered. Ac-
cording to the classification and processing of the data, the 
corresponding model was established, and the power load in 
the next 24 hours was predicted by the model.  

 As shown in Fig. (8), based on the power load data of 
three regions (CENTRL, DUNWOD and CAPITL), the de-
gree of fitting between the actual and predicted values of the 
four models is compared. As can be seen in the figure, from 
0 to 5, the prediction effect of the model is better. This peri-
od can be predicted at short intervals based on the previous 
day's power load. Power load data has short-term stability. 
The prediction accuracy of the SVR model is not only high-
er than that of the ARIMA model, but also better than the 
advanced model (RNN LSTM), which indicates that the 
prediction accuracy of the SVR model is high, the range of 
adaptation is large, and it is advanced to a certain extent.  

 First of all, with respect to the rolling point mechanism 
changes, SVR can be more flexible in revealing the mecha-
nism of change compared with other models. This is be-
cause the SVR can, at some point, extract a flexible power 
mechanism. It is a kind of very good artificial intelligence 
algorithms, and handles problems with good comprehensive 
properties. It not only reduces the risk structure, but the 
mapping procedure is also simplified. It has higher predic-
tion accuracy than the comparison model. Secondly, the 
objective model has different effects on different regions, 
since there is a difference in electricity consumption de-
pending on geographical location and economic develop-
ment level. It is understood that DUNWOD has a small ur-
ban industry and population and limited economic develop-
ment; therefore, the power load is small, while CENTRL is 
a central district with a relatively prosperous economy, de-
veloped industry and commerce, and more urban residents; 
therefore, the power load is relatively larger in CENTRL. 
The CAPITL is a cultural and political capital. In general, 
the population is small, there is no industry, the economy is 
dominated by government agencies and tourism, and the 
electricity load is lower than the CENTRL. Therefore, in 

Table 2. Basic principles of ranking of ARIMA model.  

Model ACF d PACF 

AR (p) hangover 0 P order truncation 

MA (q) Q order truncation 0 hangover 

ARMA (p,q) hangover 0 hangover 

ARIMA (p,d,q) hangover d hangover 

 

Table 3. Results of the ARIMA model for the three regions.  

Series Model p 6 12 AIC 

CAPITL M11 ARIMA (2,1,1) (0,1,1) 0.9669 0.9704 1904.94 

CAPITL M21 ARIMA (3,1,1) (1,1,1) 0.3056 0.6686 351.74 

CENTRL M12 ARIMA (2,1,3) (0,1,2) 0.4143 0.0857 1519.69 

CENTRL M22 ARIMA (2,1,3) (2,1,1) 0.8657 0.9619 794.34 

DUNWOD M13 ARIMA (2,0,2) (1,1,1) 0.9713 0.9898 1196.12 

DUNWOD M23 ARIMA (3,1,1) (3,1,1) 0.0959 0.2151 412.63 
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addition to better revealing the power mechanism behavior 
of the CENTRL by SVR, it also provides a more in-depth 
research direction for the artificial intelligence method. In 
order to further explain the prediction effect of the model, 
several quantitative indicators are provided as supplements 
in this paper. 

 Tables 4-6 show the error data of the three areas. It can 
be intuitively found that the four prediction error indexes of 
the other three models are better than that of the ARIMA 

model. ARIMA model has the most significant prediction 
error and poor stability. The prediction error of the SVR 
model is relatively smaller, the stability is good, and the 
prediction accuracy is high. 

 First of all, from the perspective of economic develop-
ment, the regional center of New York City is one of the 
most active economic markets in the world. It is also one of 
the most important commercial and financial centers global-
ly, with the most prosperous economic development, having 

 

Fig. (7). ARIMA model prediction effect diagram. (A higher resolution / colour version of this figure is available in the electronic copy of 
the article). 

 

 

Fig. (8). Comparison of actual and predicted values of the four models in the three regions. (A higher resolution / colour version of this fig-
ure is available in the electronic copy of the article). 
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numerous museums, galleries and performing arts competi-
tion venues. Therefore, its electricity consumption is rela-
tively larger. In order to adapt to the adjustment of electrici-
ty consumption in different industries and departments, the 
economic effect of electricity consumption fluctuates great-
ly. Therefore, the error is relatively higher no matter which 
method is used. Its development is far behind CENTRAL, 
although DUNWOD is also an important economic and fi-
nancial center. Secondly, from the perspective of household 
electricity consumption, CENTRL is the largest and the 
most crowded city in the United States, with a large number 
of residents and a huge traffic flow. Therefore, the subway 
bus has become the primary mode of transportation, which 
consumes a large amount of electricity. The city of 
CENTRL is the cultural and political capital home to the 
House of Representatives and the Senate. Domestic electric-
ity consumption is relatively lower compared to CENTRL 
for a densely populated city. CENTRL has a distinct climate 
characteristic with four distinct seasons. Some regions of 
DUNWOD are not the most suitable places to live due to 
their unsuitable cold climate and short spring season. There-
fore, CENTRL's electricity consumption is still higher, and 
its fluctuation and error are more significant. Finally, for 
agriculture and industry in DUNWOD, suitable crops are 
very limited due to the climatic conditions. However, 
CENTRL and CAPITL have distinctive climatic characteris-
tics. High agricultural electricity consumption and rapid 

economic development have restricted the development of 
the industry. Therefore, CENTRL's electricity consumption 
is still relatively higher, verifying the size of the above-
mentioned error index. 

4.2. Kolmogorov-Smirnov Predictive Accuracy (KSPA) 
Test 

 KSPA test is a complementary statistical test method 
used to distinguish the prediction accuracy of two sets of 
predictions. It is a non-parametric test based on the Kolmo-
gorov-Smirnov (KS) test principle called the KS prediction 
accuracy (KSPA) test. The advantage of the KSPA test is 
that it can not only distinguish the predicted distributions 
from the two models, but also determine whether the model 
with the least error also reports the least random error com-
pared to the other model. In addition, the test is not affected 
by the potential autocorrelation that may exist in the predic-
tion error. 

 The first part of the KSPA test is the two-sample bilat-
eral KSPA test, which aims to find out that the distribution 
of the two prediction errors is statistically significantly dif-
ferent (and thus compares the prediction accuracy of the 
predictions). The second part is the two-sample one-sided 
KSPA test, which aims to determine whether the prediction 
with the smallest error based on a loss function also has a 

Table 4. Error indicators of CAPITL model. 

CAPITL MSE/*10^4 RMSE MAE MAPE 

SVR 

ARIMA 

0.0719 

5.9755 

26.8325 

244.4502 

17.0090 

239.9456 

1.1609 

15.9595 

RNN 0.1355 36.8115 30.9497 2.1692 

LSTM 0.1853 43.0485 35.5544 2.4879 

 

Table 5. Error indicators of the CENTRL model.  

CENTRL MSE/*10^4 RMSE MAE MAPE 

SVR 

ARIMA 

0.0886 

38.1506 

29.7699 

617.6616 

21.0903 

581.9574 

1.0498 

29.2412 

RNN 1.2603 112.2631 83.8409 4.1508 

LSTM 0.1732 41.6257 32.0289 1.6129 

 

Table 6. Error indicators of the DUNWOD model.  

DUNMOD MSE/*10^4 RMSE MAE MAPE 

SVR 

ARIMA 

0.0798 

0.9194 

28.2474 

95.8839 

19.1777 

88.2929 

2.8739 

12.5483 

RNN 0.2710 52.0649 42.2487 5.9198 

LSTM 0.2619 51.1789 40.8439 5.8964 
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random smaller error compared with the competitor's pre-
diction.  

 The test results of KSPA single-bilateral prediction ac-
curacy are shown in Table 7. First of all, it rejects the null 
hypothesis because the P-value of the bilateral KSPA test is 
less than 0.05, which confirms the statistically significant 
difference between the error of the proposed prediction 
model and the power load of the comparison model. Sec-
ondly, the unilateral KSPA test was used to determine the 
low random error of the target model and the comparison 
model. The unilateral KSPA test confirmed that the SVR 
model, the RNN model, and the LSTM model provided a 
lower prediction of random error than the ARIMA model, 
providing additional evidence for the conclusion of the bi-
lateral KSPA test that showed a statistically significant dif-
ference between the two predictions.  

 Figs. (9-11) show the sample prediction error distribu-
tion and experience cumulative function distribution of the 
three cities (CENTRL DUNWOD and CAPITL) obtained 
by the SVR model, the ARIMA model, RNN model, and the 
LSTM model, respectively. In this case, we found that the 

prediction accuracy of SVR is better than that of ARIMA, 
RNN, and LSTM, and the test results verified the above 
prediction analysis. 

 To sum up, the above-tested graphs and models are 
summarized as follows. As shown in Figs. (9-11), (1) the 
proposed target model SVR can better describe the random 
deviation and make the error smaller; (2) The overall ad-
vantage of the model and the improvement of prediction 
accuracy are statistically significant, and (3) The universali-
ty and advanced nature of the model are confirmed. 

CONCLUSION 

 Accurate short-term load forecasting is of great signifi-
cance to the control, operation, and planning of power sys-
tems. Based on the non-stationary and random characteris-
tics of power load series, this paper establishes a model and 
uses 567 power load data from three regions (CAPITL, 
CENTRL, DUNWOD) from 0:00 on January 1, 2016, to 
0:00 on January 8, 2016, to make a prediction analysis of 
this algorithm. The results are as follows: 

Table 7. KSPA single-bilateral prediction accuracy test results.  

KSPA text 
CAPITL/ CENTRL/ DUNWOD CAPITL/ CENTRL/ DUNWOD 

Two-sided (p-value) One-sided (p-value) 

SVR <0.01/<0.01/<0.01 <0.01/<0.01/<0.01 

ARIMA <0.01/<0.01/<0.01 <0.01/<0.01/<0.01 

RNN <0.01/<0.01/<0.01 <0.01/<0.01/<0.01 

LSTM <0.01/<0.01/<0.01 <0.01/<0.01/<0.01 

 

                   (a) Distribution of errors.                               (b) Empirical cumulative distribution functions. 
Fig. (9). Distribution of errors and empirical cumulative distribution functions of errors in CAPITL. (A higher resolution / colour version of 
this figure is available in the electronic copy of the article). 
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                    (a) Distribution of errors.                                (b) Empirical cumulative distribution functions. 
Fig. (10). Distribution of errors and empirical cumulative distribution functions of errors in CENTRL. (A higher resolution / colour version 
of this figure is available in the electronic copy of the article). 

 

     

                     (a) Distribution of errors.                                (b) Empirical cumulative distribution functions. 

Fig. (11). Distribution of errors and empirical cumulative distribution functions of errors in DUNWOD. (A higher resolution / colour ver-
sion of this figure is available in the electronic copy of the article). 
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1. Support vector machine regression SVR model main-
ly has the advantages of linear separability and struc-
tural risk minimization. By the decomposition of the 
EMD method and the combination of each character-
istic component, the problem of data fluctuation can 
be solved effectively, and the superposition of data 
modes can be eliminated. The modeling analysis of 
time series eliminates the nonstationarity of power 
load data and has a good short-term forecasting ef-
fect. 

2. The prediction accuracy and fitting rate of the sup-
port vector machine regression SVR model are better 
than the ARIMA model. The model can not only ob-
jectively, comprehensively, and accurately fit the 
predicted value of power load, but also adapt to the 
development needs of modern smart grid and control 
systems. 

3. The proposed model can be widely used in short-
term power load production decisions. On the one 
hand, it can reduce unnecessary waste of electric en-
ergy and reduce the cost of power generation while 
meeting the social demand for electricity. On the 
other hand, the accurate prediction of power load can 
not only improve the economic and social benefits, 
ensure the normal production and life of the society, 
but also help to maintain the safety and stability of 
the power grid operation.  
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