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� Abstract: Aims: This paper proposes a differential evolution algorithm to solve the multi-objective 
sparse reconstruction problem (DEMOSR). 

Background: The traditional method is to introduce the regularization coefficient and solve this prob-
lem through a regularization framework. But in fact, the sparse reconstruction problem can be regarded 
as a multi-objective optimization problem about sparsity and measurement error (two contradictory 
objectives). 

Objective: A differential evolution algorithm to solve multi-objective sparse reconstruction problem 
(DEMOSR) in sparse signal reconstruction and the practical application. 

Methods: First of all, new individuals are generated through tournament selection mechanism and 
differential evolution. Secondly, the iterative half thresholding algorithm is used for local search to 
increase the sparsity of the solution. To increase the diversity of solutions, a polynomial mutation strat-
egy is introduced. 

Results: In sparse signal reconstruction, the performance of DEMOSR is better than MOEA/D-ihalf 
and StEMO. In addition, it can verify the effectiveness of DEMOSR in practical applications for sparse 
reconstruction of magnetic resonance images. 

Conclusion: According to the experimental results of DEMOSR in sparse signal reconstruction and the 
practical application of reconstructing magnetic resonance images, it can be proved that DEMOSR is 
effective in sparse signal and image reconstruction.�
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1. INTRODUCTION 

1.1. Single Objective Sparse Reconstruction  

 Compressed sensing (CS) [1] is an emerging information 
acquisition technology, which can reconstruct the original 
signal from a small number of measured values via the 
sparse characteristics of the signal. This theory has attracted 
great attention in the area of information theory, image pro-
cessing, microwave imaging, pattern recognition, wireless 
communication and biomedical engineering [2-7]. With the 
emergence of Big data and the Internet of Things, the appli-
cation value of the CS theory is increasingly prominent. 
 According to the CS theory, sparse reconstruction prob-
lems can be expressed as Eqs. (1) and (2): 

            (1) 

           (2) 
where is an n-dimensional sparse signal; 
 
*Address correspondence to this author at the School of Electric and In-
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is a m-dimensional measurement vector; 

 A is an  full-rank and over-complete sensing ma-
trix with ; , which is the zero-norm of x, it is 
used to represents the number of nonzero components of x, 
and also called the sparsity of the signal x.  is a non-
negative coefficient and represents the noise level. 

 It can be proven that these are NP-hard in (1) and (2) [8]. 
Greedy strategy is a common approach for reconstructing 
sparse signals. The well-known sparse reconstruction algo-
rithms include basic pursuit algorithm [9], matching pursuit 
algorithm [10], and orthogonal matching pursuit algorithm 
[11]. However, these algorithms are difficult to find the 
global optimal solution, only an approximate solution can be 
provided as the final solution of the sparse reconstruction 
problem. In addition, the sparse reconstruction methods 
based on the regularization framework can also effectively 
recover the sparse signals. Sparse reconstruction problem 
can be formulated as Lq regularization problem (Eq. 3):  

           (3) 

0
min    . .   s t

x
x y = Ax

2

0 2
min    . .   s t δ− ≤

x
x y Ax

1 2( , ,..., )T
nx x x=x

1 2( , ,..., )T
my y y=y

m n×
m n�

0
x

δ

2

2
min  ( )=

q
F λ + −

x
x x y Ax

2666-7835/22 $65.00+.00 © 2022 Bentham Science Publishers

http://crossmark.crossref.org/dialog/?doi=10.2174/2666782701666210910170504&domain=pdf


A Differential Evolution Algorithm for DEMOSR                                e100921196393 The Chinese Journal of Artificial Intelligence, 2022, Vol. 1, No. 1 

55 

where is a non-negative coefficient;  is a quad-

ratic function for x; , it stands for 

the regularization term (Lq-norm of x). q=0, q=1 and q=1/2, 
which represent the regularization framework based on L0, 
L1, and L1/2, respectively. Iterative hard thresholding method 
[12], iterative soft thresholding method [13], iterative half 
thresholding method [14] are the well-known solvers for L0, 
L1, and L1/2. Sparsity estimation is often used in these meth-
ods, while the sparsity of the practical problems is often 
unknown. Moreover, the quality of the reconstructed solu-
tion is mainly affected by the setting of the regularization 
parameter  in the regularization methods. In fact, a sparse 
reconstruction problem can be transformed into a multi-
objective optimization problem and the two objectives are 
the sparsity and measurement error, which are in conflict 
with each other. This method avoids the influence of the 
regularization parameter on the reconstructed solution. The 
framework of the multi-objective optimization method is 
given in Eq. (4):  

            (4) 

where  is the sparsity of the sparse signal x; 

 is measurement error. 

1.2. Multi-Objective Sparse Reconstruction  

 In recent years, some algorithms based on multi-
objective frameworks, MOEA/D and NSGA-II, have been 
proposed for sparse reconstruction problems. In a study 
[15], a revised version of MOEA/D based on an iterative 
thresholding algorithm was proposed. The proposed algo-
rithm is to find a part of the Pareto Front (PF) containing the 
knee solution, but it is not suitable for multi-objective sparse 
reconstruction problems with large noise levels. In order to 
find the optimal tradeoff solution, a multi-objective evolu-
tionary algorithm based on NSGA-II was proposed and de-
fined as StEMO [16]. In StEMO, a soft thresholding algo-
rithm [17] was applied to increase the spread and the con-
vergence rate. In addition, the performance of StEMO is 
significantly better than the traditional single-objective 
sparse reconstruction method, and it can recover sparse sig-
nals with noisy and noise-corrupted images. The key to a 
multi-objective sparse reconstruction problem is to quickly 
and accurately locate the PF near the knee solution. Howev-
er, the purpose of StEMO is to approximate the entire PF, 
which consumes a lot of computational resources and ulti-
mately reduces the convergence speed. Li et al. [18] pre-
sented a multi-phase multi-objective approach based on de-
composition for sparse reconstruction (MOEA/D-L1/2), 
which optimizes subproblems by multi-phase search strate-
gy. The multi-phase search strategy involves a chain manner 
in the first phase and a random manner in the second phase, 
the former aims at approximating the whole PF of the multi-
objective sparse reconstruction problem. MOEA/D-L1/2 can 
effectively solve multi-objective sparse reconstruction prob-
lems with or without noise. In order to balance the explora-
tion of the whole PF, the exploitation of the local PF with a 
k-sparse solution and reducing the computational complexi-

ty, a preference-based multi-objective evolutionary ap-
proach was proposed in another study [19]. Yan et al. de-
signed a hybrid evolutionary algorithm with linear Breg-
man-based local search for multi-objective sparse recon-
struction problems [20]. In order to accelerate convergence, 
the number of individuals and iterations in the linear Breg-
man-based local search is set to be adaptive. A multi-
objective sparse reconstruction with transfer learning and 
localized regularization (MOSR-TLL) was proposed in a 
study [21]. MOSR-TLL used a knowledge transfer operator 
and localized regularization strategy to accelerate the con-
vergence rate and improve the reconstruction accuracy. A 
multi-objective PSO with a one-dimension-dominated 
method was designed in another study [22], which can find 
a uniformly distributed PF and improve both the diversity 
and the convergence of the PF. Multi-objective evolutionary 
sparse recovery approach based on adaptive local search 
(ALSEMO) was proposed. Two local search methods are 
designed using the decomposition-based multi-objective 
evolutionary algorithm, and an adaptive local search mecha-
nism is formed according to the competition strategy be-
tween the two methods in ALSEMO [23]. Most algorithms 
can solve multi-objective sparse reconstruction problems, 
and they cost a lot of time on the entire PF. They cannot 
provide fast reconstruction. However, the solution only 
close to the knee area is meaningful for the multi-objective 
sparse reconstruction problem.  
 Differential evolution (DE) was firstly proposed for con-
tinuous global optimization problems [24]. It is a heuristic 
random search model based on population, which is a 
branch of evolutionary algorithms. It has the advantages of 
dynamically tracking the current search situation, less con-
trol parameters, high convergence accuracy, strong robust-
ness, and no need to rely on the feature information of the 
problem. Many multi-objective differential evolution 
(MODE) algorithms were proposed to solve MOPs. They 
have been successfully applied in the field of science and 
engineering [25-29]. They can generate a number of Pareto 
solutions in a single run; the reason is that most of them are 
based on population. Furthermore, existing algorithms still 
need to be improved in terms of convergence speed and 
reconstruction accuracy. In practical applications, signals or 
images with noise are also a challenge for multi-objective 
sparse reconstruction. 
 To our best knowledge, NSGA-II, MOEA/D and 
MOPSO, which are popular multi-objective frameworks, 
have been used for sparse reconstruction problems. MODE 
is a powerful population-based random search technique, 
which has the characteristics of simple structure and superi-
or performance. The effectiveness of MODE has been prov-
en in solving complex multi-objective optimization prob-
lem. However, it has not been used to solve sparse recon-
struction problems. Therefore, this paper proposes a multi-
objective differential evolution algorithm for sparse recon-
struction problems.  

2. METHODOLOGY 

2.1. Proposed Algorithm 

 In order to solve sparse reconstruction problems, a mul-
ti-objective differential evolution algorithm is presented, 
and it introduced an iterative half thresholding algorithm as 
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a local search operator, which can improve the reconstruc-
tion accuracy. 
2.1.1. Framework of the Proposed DEMOSR

 The framework of the proposed DEMOSR is described 
in Fig. (1), with the corresponding pseudo-code given in 
Algorithm 1. In Step 1, the initial population P0, the obser-
vation matrix A, and the measurement vector y are random-
ly generated. The objective function values of individuals in 
the initial population are calculated according to formula 
(4). PIters is the population of the Iters-th generation. The 
iteration number is initialized as Iters=1 and the maximum 
number of the iterations is set to maxIters. In Step 2-Step 3, 
we use a tournament selection mechanism and differential 
evolution as mutation and crossover operators to generate a 
new individual. In order to increase the diversity of solu-
tions, a polynomial mutation strategy is introduced in Step 
4. The iterative half thresholding algorithm is introduced as 
a local search strategy to improve the sparsity of the solu-
tion (Step 5). Note that this strategy is used for each indi-
vidual in the population, including newly generated individ-
uals. In Step 6, the worst individual is removed from the 
current population PIters. In Step 7, we first sort the sparsity 
of individuals based on the non-dominant sorting strategy. 
Then, all non-dominated individuals are selected and the 
sparsity of the selected individual is updated. In Step 8, the 
method of the weighted sum of objective values is used to 
obtain the final solution [30].

 
Fig. (1). The framework of DEMOSR. 

Algorithm 1. The procedure of DEMOSR. 

1 Input: The signal length, n; the number of observations 
m, the signal sparsity, k; the cross probability, Cr; the 
scaling factor, F; the population size, NP; the maximum 
number of iterations, maxIters; the maximum number of 
steps in local search ls. 

2 Output: The optimal sparse solution. 

3 Step 1: Initialization and evaluation 

4 Step 1.1: Initialize the sensing matrix A and measure-
ment vector y (Algorithm 2); 

5 Step 1.2: Generate the initial population P0 randomly; 

6 Step 1.3: Evaluate the initial population P0 according 
to formula (4); 

7 Step 2: Selection  

8 temp1=BinaryTournamentSelection(PIters ) ; 

9 Step 3: Crossover 

10 ( )2 DifferentialEvolutionCrossover 1temp temp=  

11 Step 4: Mutation 

12 ( )PolynomialMutation 2offs tpring emp= ; 

13 Step 5: Local search (Algorithm 3) 

14 ( )HalfThresholdSearch ,offspring offspring step= ; 

15 Step 6: Updated population 

16 PIters= Update (PIters,offspring) 

17 Step 7: Select non-dominated individuals and update 
the sparsity; 

18 Step 8: If the termination condition is satisfied 

19 Terminate

20 Otherwise 

21 Repeat Step 2-7, Iters=Iters+1; 

22 End If 

23 Step 9: Acquisition of the optimal solution: the meth-
od of weighted sum of objective values is used to acquire 
the final solution.

 
2.1.2. The Procedure of Initialization of the Sensing Ma-
trix and Measurement Vector 

 The CS theory mainly consists of three parts: sparse rep-
resentation, the design of the sensing matrix and sparse re-
construction. The focus of this paper is to design an effec-
tive algorithm for sparse reconstruction problems, and the 
other two parts are not studied in depth. In this subsection, 
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the procedure of initialization of the sensing matrix A and 
measurement vector y is presented in Algorithm 2. 
 

Algorithm 2. The procedure of initialization of the 
sensing matrix and measurement vector. 

1Input: n, m, k; 

2 Output: the sensing matrix A and measurement vector 
y; 

3 Step 1: Generate a signal x_opt with all zero-dimensional 
elements; 

4 Step 2: Randomly select k positions from the signal 
x_opt, and replace the element zeros at these k positions 
with randomly generated non-zero values, thereby con-
verting the signal x_opt into a sparse signal with sparsity 
degree k; 

5 Step 3: Randomly generate an  observation ma-
trix A and orthogonalize it; 

6 Step 4: Obtain the observation vector  accord-
ing to Eq. (1). 

7 Step 5: Unitize the observation matrix A and meas-
urement vector y. Then, output A and y. 

 
2.1.3. Selection, Crossover and Mutation Operators  

 According to the binary tournament selection mecha-
nism, we randomly select two individuals from the popula-
tion PIters as parents. Then, the DE/rand/1 strategy is applied 
to generate a new individual which is described as follows 
(Eq. 5):  

 DE/rand/1: 

           (5) 

where is the current individual in the Iters generation,

and are randomly selected from the population of 
the Iters generation, which are different from each other; r1, 
r2, r3 are randomly selected from the interval [1, NP], which 
are also different from each other. 

 The new individual is updated in the following way: 

 If rand<Cr 

 

 else  

 

 End 

 
where rand is a uniformly distributed random number in 
[0,1]; the scaling factor F=1; the crossover probability 
Cr=0.8; ai, bi are the minimum and maximum values of the 
i-th individual Xi. 

 In order to increase the diversity of the population, a 
polynomial mutation strategy [31] is introduced, which is 
widely used for multi-objective optimization. The polyno-
mial mutation operator is described as follows: 

 If rand<pm 

 
 else  

 
 End 

where pm=1/n and = 20 are the two control parameters 
for the mutation operator; r=random (0,1); 
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 The iterative half thresholding algorithm is used to im-
prove the new individual after the crossover operator and 
mutation operator. The iterative half thresholding algorithm 
is described in subsection 2.4. After executing the local 
search strategy, the new individual is merged with the cur-
rent population, and then the individual with the worse 
ranks and crowding distances is eliminated via fast-elitist 
non-dominated sorting and crowding distance criteria [32]. 
Steps 2-7 are repeated until the termination condition is sat-
isfied. In Step 9, a final solution is selected from the popula-
tion by the weighted sum of objective values method. 

2.1.4. Local Search Operator 

 The well-known sparse reconstruction methods based on 
regularization frameworks are iterative hard thresholding 
algorithm, iterative soft thresholding algorithm and iterative 
half thresholding algorithm. They are commonly used solv-
ers for L0, L1, and L1/2, respectively. Compared with other 
thresholding algorithms, the iterative half thresholding algo-
rithm has a faster convergence speed and higher reconstruc-
tion accuracy [33]. In DEMOSR, we select the iterative half 
thresholding algorithm as a local search strategy. The main 
steps in the iterative half thresholding algorithm are gradient 
descent, regularization parameter optimization, and trunca-
tion operation. The procedure of the iterative half threshold-
ing algorithm is presented in Algorithm 3. 

 

m n×

1mR ×∈y

( )1 2 3
Iters Iters Iters

i r r rX x F x x= + × +

1
Iters
rx

2
Iters
rx 3

Iters
rx

( )*
1 2 3

Iters Iters Iters
i r r rX x F x x= + × +

*
i iX X=

*

* * *

*

, with 

, with , 1,2, ,

, with 

i i i

i i i i i

i i i

a X a

X X b X a i NP
b b X

′

⎧ <
⎪

= ≤ ≤ =⎨
⎪ <⎩

�

( )*offspring
i i i i iX X b aδ′= + × −

*offspring
i iX X ′=

mη



The Chinese Journal of Artificial Intelligence, 2022, Vol. 1, No. 1      e100921196393 Zhu et al. 

58 

Algorithm 3. The procedure of iterative half thresh-
olding algorithm. 

1 Input: the sensing matrix and measurement vector y; 

2 Output: xlocal 

3 Step 1: t=0, 3= 54 4c , x_old= rand(n,1); 

4 Step 2: Improve the solution tx  by gradient descent 
gradient descent �x=x t + AT Ax t − y( ) ; 

5 Step 3: Take the absolute value of the elements in �xi , 
and sort them in descending order: 

�xi1
≥ �xi2

≥� �xin
 

6 Step 4 Set regularization parameters nλ ; 

7 Step 5: Threshold interruption, force the smaller abso-
lute value in �xi  to zero: 

If �xi > cλn

2
3  

xi
t+1 =ψ 2 (�xi )  

otherwise 
1 0t

i
+ =x  

End If 

8 Step 6: If the termination condition is satisfied: 
x t+1 − x t < ε  or t ≥ tmax  

1t
local

+=x x , then terminate and output xlocal 

otherwise 

t=t+1, then Repeat Step 2-Step 5 

End If 

where �xi1
 represents the largest element value among the 

absolute values of all elements in �xi , �xin
represents the 

smallest element value among the absolute values of all el-
ements in �xi ; tmax represents the maximum number of itera-

tions; the regularization parameter nλ is set to 96
9

xk
t+1

3
2 ; ε  

is an interruption threshold and is set to ε =1E-10. In Step 5, 
ψ 2 (�xi )  can be formulated as (Eqs. 6 and 7):  
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2
3
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λn

8
�xi

3

⎛

⎝
⎜

⎞

⎠
⎟

−
3
2

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

          (7) 

3. RESULTS AND DISCUSSION  

3.1. Experimental Setting 

 In our experiments, we considered to recover sparse sig-
nals and reconstruct the magnetic resonance images. Nine 
artificial sparse instances without noise (P1-P9) are present-
ed in Table 1. n is the length of signal; m is the length of the 
observation vector, and k is the sparsity of the true signal. 
The dimensionality of these instances gradually increases, 
and the length of the corresponding observation vector 
gradually decreases. It also indicates that the difficulty of 
the artificial sparse instances increases gradually. 
 Considering that the smaller the ratio of m to k, the 
greater the difficulty of the test instances. The test instances 
are actually an ill-conditioned problem when the ratio m to k 
is less than 2. In this case, it is difficult to recover sparse 
solutions. As shown in Table 1, the test instances P3, P6, 
and P9 are more difficult to solve than other instances of the 
same length. DEMOSR is coded by MATLAB and tested on 
the operating system Windows 10 Professional with 
3.60GHz Intel (R) Core (TM) i7-7700 CPU 1170GB 
memory.  

 According to the literature [15-16,18], the experimental 
parameter settings corresponding to each algorithm in this 
paper are as follows:  
 MOEA/D-ihalf: step=10; 
 StEMO: the crossover rate is 0.5 and the mutation rate is 
0.1; 

 DEMOSR: The probability of mating restriction is set to 
β =0.9; the scaling factor is F=0.9; the crossover probabil-
ity is set to 1; the polynomial mutation operator is set to 
pm=1/n and ηm = 20. 

 For a fair comparison, each algorithm involved in this 
paper is executed 30 times independently. The parameters of 
the single-objective sparse reconstruction algorithm (BP, 
MP, OMP, IST) refer to the settings in the literature [9-11, 
17]. The population number of three multi-objective algo-
rithms (MOEA/D-ihalf, StEMO, DEMOSR) is all set to 
100. The maximum number of the iterations is 5000. The 
observation matrix of all algorithms is a Gaussian random 
matrix, and the measured value vector is generated by y=Ax. 
The interruption condition of the algorithm is that the num-
ber of iterations is greater than or equal to the maximum 
number of iterations.  

3.2. Experimental Results on Artificial Sparse Optimiza-
tion Instances 

 In this section, in order to analyze and verify the effec-
tiveness of DEMOSR, the experimental comparisons are 
made from the reconstruction error with different sparsity 
and the comparison with two multi-objective algorithms 
under the same conditions. An evaluation standard (Recon-
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struction Error, RE) [20] is introduced, which is defined as 
follows: 

            
(8)

 
where xopt stands for the obtained optimal sparse signal; xtrue 
represents the n-dimensional true signal.  
 For the same test instances, the sparsity is determined. 
When the length of the observation vector m is larger, the 
smaller the ratio of m to k (the sparsity of the test instance), 
the greater the difficulty of the test problem, and the true 
sparse solution or approximate sparse solution is easier to be 
found. Fig. (2) shows the impact of the length of the obser-
vation vector on RE in five sparse methods.  

 
Fig. (2). Comparison of DEMOSR, BP, IST, MP and OMP with 
different lengths of the observation vector m on RE, where m=250, 
260, 270, 280, 290, 300, respectively. (A higher resolution / colour 
version of this figure is available in the electronic copy of the arti-
cle). 
 
 As shown in Fig. (2), as the length of the observation 
vector increases, the average value of RE corresponding to 
each algorithm shows a downward trend, except for OMP. 
The experimental result is consistent with the theoretical 

analysis. In addition, this also indirectly shows that the ac-
curacy of the reconstructed solution via OMP and 
DEMOSR under different lengths of observation vector m is 
higher than that of other algorithms. However, an atom is 
selected to update the atom set in each iteration of the OMP, 
which will cause a huge cost of reconstruction time, espe-
cially for the long signals with noise. In addition, the num-
ber of iterations is closely related to the number of sparsity 
or measurement. With the increase of the number of itera-
tions, time consumption will significantly increase. It has a 
slow speed for image signal reconstruction. In contrast, the 
diagonal nonlinearity of the threshold operator and the 
threshold of the function is that the iterative half threshold-
ing algorithm can be applied to large-scale problems. More-
over, it is robust to observation noise. Therefore, we select 
the iterative half thresholding algorithm as a local search 
strategy in DEMOSR. 

 In the areas of sparse reconstruction, a solution has the 
same or approximate sparsity as the true sparse signal, and 
the measurement error corresponding to this solution is very 
small. It can be said that the algorithm successfully recon-
structed the true sparse signal. In order to compare the per-
formance of the proposed algorithm MOEA/D-ihalf and 
StEMO, the simulation experiments are conducted with nine 
artificial noiseless random sparse signals. The experimental 
results are shown in Fig. (3).  

 As shown in Fig. (3), the abscissa represents the sparsity 
of the test instances, and the ordinate represents the log of 
the measurement error of the reconstructed signal. It can be 
seen from (Fig. 3) that the reconstruction solutions obtained 
by DEMOSR on seven artificial sparse instances (P1, P2, 
P3, P5, P6, P7 and P8) show a sharp drop near the true spar-
sity. The smallest measurement errors are all below 1E-10, 
some are even below 1E-20. For the same instance, 
MOEA/D-ihalf and DEMOSR have similar phenomena, 
while the measurement error of the former is larger. Com-
pared with the other two algorithms, the measurement error 
of the obtained solution by StEMO is not competitive. 
Therefore, the performance of DEMOSR is better than the 
other two multi-objective sparse reconstruction algorithms. 

2

2

-
= opt true

true

RE
x x

x

Table 1. The details of artificial sparse instances. 

Instance Name Length of Signal n  Length of the Observation Vector m True Sparsity k 

P1 512 300 130 

P2 512 280 130 

P3 512 260 130 

P4 1024 600 260 

P5 1024 560 260 

P6 1024 520 260 

P7 5120 3000 1300 

P8 5120 2800 1300 

P9 5120 2600 1300 
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 To evaluate the performance of MOEA/D-iHalf, StEMO 
and DEMOSR, we give the statistical results (mean and 
standard deviation) of the measurement error and the sparsi-
ty in the experiments with different test instances. Tables 2 
and 3 show the mean and standard deviation results of the 
reconstruction error and the sparsity with different test in-
stances, respectively. The numbers given in bold show the 
results for the best-performing method in each row. Com-
pared with the other two algorithms, the sparsity of the solu-
tion obtained by DEMOSR is closest to the sparsity of the 
true solution. In terms of the measurement error, the statisti-
cal results of the mean and standard deviation obtained by 
DEMOSR are smaller than MOEA/D-iHalf and StEMO. 
From the statistical results, we can see that StEMO has the 
largest measurement error on each test instance, indicating 
that the accuracy of the reconstructed signal is poor. This is 
consistent with the results observed in Fig. (3). 

3.3. Practical Application  

 In the previous subsection, we compared and analyzed 
the performance of the proposed DEMOSR with MOEA/D-

ihalf and StEMO by simulating nine artificial noiseless ran-
dom sparse signals. It is worth noting that the research ob-
ject of these simulation experiments is a set of one-
dimensional sparse signals. In order to verify the efficacy of 
DEMOSR with a practical application and its ability to re-
construct two-dimensional sparse images, we considered to 
recover magnetic resonance images (SR1, SR2, SR3 and 
SR4) in this subsection. The magnetic resonance images are 
128 128, but they are not sparse images. According to the 
basic idea of compressed sensing, an observation matrix, 
which is not related to the transform base, can project the 
magnetic resonance images into a low-dimensional space. 
Then, the original image can be reconstructed with high 
probability from these few projections. Based on this, Haar 
wavelets are used as sparse basis matrix to convert the mag-
netic resonance images into sparse images.  
 The original images, the reconstructed spatial images 
and the reconstructed images by DEMOSR are shown in 
Fig. (4), and the details of images and measurement errors 
of reconstructed images are shown in Table 4. The simula-
tion results show that DEMOSR can reconstruct the original 

×

Table 2. The statistical results (mean and standard deviation) of the sparsity of the solution obtained by MOEA/D-iHalf, StEMO 
and DEMOSR on nine instances. 

- DEMOSR MOEA/D-ihalf StEMO 

P1 129.8 0.70 146.9 15.35 108.6 9.83 

P2 129.6 0.52 135.4 21.92 113 14.85 

P3 129.4 0.84 128.1 7.00 113.1 18.94 

P4 260 0 284.1 35.77 202.89 14.31 

P5 260 0 268.4 43.85 203.2 15.31 

P6 259.7 0.67 237.8 38.50 193.1 18.51 

P7 1304.1 5.49 1272 134.68 1516.4 363.98 

P8 1299.7 9.94 1049.4 244.88 986.2 115.41 

P9 1309.6 14.10 1095 205.57 846.8 96.16 

 
Table 3. The statistical results (mean and standard deviation) of the measurement error of the solution obtained by MOEA/D-

iHalf, StEMO and DEMOSR on nine instances. 

- DEMOSR MOEA/D-ihalf StEMO 

P1 3.93E-06 1.17E-05 1.88E-05 4.61E-05 19.40 5.39 

P2 7.52E-06 1.54E-05 1.37E-01 2.61E-01 24.18 7.55 

P3 1.40E-02 4.41E-02 1.11E-01 1.97E-01 24.83 8.66 

P4 9.35E-07 2.95E-06 2.45E-03 7.40E-03 44.29 10.40 

P5 3.34E-15 1.06E-14 3.32E-01 9.70E-01 59.33 18.04 

P6 6.98E-11 2.06E-10 8.84E-01 9.43E-01 75.10 14.72 

P7 2.87E-05 8.86E-05 8.30E-01 1.38 8.61E-01 1.60 

P8 1.10E-04 3.48E-04 4.50 3.58 298.95 84.27 

P9 1.49E-02 3.53E-02 2.8962 3.7052 462.54 96.30 
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(a)                                                                 (b)                                                                 (c) 

             
(d)                                                                 (e)                                                                 (f) 

            
(g)                                                                 (h)                                                                   (i) 

Fig. (3). Performance of DEMOSR, MOEA/D-ihalf and StEMO on nine artificial sparse instances without noise (P1-P9 correspond to (a-i). 
(A higher resolution / colour version of this figure is available in the electronic copy of the article). 

 

 
 (a) SR1: The original image the reconstructed spatial image the reconstructed image 

(Fig. 4) Contd…. 
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 (b) SR2: The original image the reconstructed spatial image the reconstructed image 

 
(c) SR3: The original image the reconstructed spatial image the reconstructed image 

 
(d) SR4: The original image the reconstructed spatial image the reconstructed image 

Fig. (4). The original images, the reconstructed spatial images and the reconstructed images by DEMOSR. 

 
Table 4. The details of images and measurement errors of reconstructed images. 

Magnetic Resonance Images Sparsity Transformed Sparsity Measurement Error 

SR1 16266 7473 2.40E+03 

SR2 16247 7147 2.45E+03 

SR3 8020 4524 6.37E-05 

SR4 7806 4566 1.66E-05 

 
image. Compared with the original image, the reconstructed 
image is clearer. The reconstructed images of SR1 and SR2 
contain noise, while the reconstructed images of SR3 and 
SR4 are more effective and accurate. As shown in Table 4, 
the measurement errors of SR1 and SR2 are also larger than 
that of SR3 and SR4. This also further verified the effec-
tiveness of DEMOSR in the image reconstruction, while it 
is not suitable for the reconstructed magnetic resonance im-
ages with noise.  

CONCLUSION 

 In this paper, we propose a differential evolution algo-
rithm for solving multi-objective sparse reconstruction prob-

lems (DEMOSR), which involves four strategies: tourna-
ment selection mechanism, DE operator, polynomial mutation 
strategy and iterative half-threshold algorithm. The experi-
mental results on nine artificial sparse instances without 
noise show that the performance of the proposed method is 
better than MOEA/D-ihalf and StEMO, which are common-
ly used for sparse reconstruction. It also can be proved that 
DEMOSR maintains a high exploration ability and conver-
gence rate. Practical applications also prove the effective-
ness of DEMOSR in sparse image reconstruction. 
 For future work, we will conduct more research on im-
proving the ability of DEMOSR to solve sparse reconstruc-
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tion problems, increasing the robustness of DEMOSR, and 
reducing the computational complexity of DEMOSR. 
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