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� Abstract: Background: Examination Timetabling Problem that tries to find an optimal examination 
schedule for schools, colleges, and universities, is a well-known NP-hard problem. This paper presents 
a Genetic Algorithm variant approach to solve a specific examination timetabling problem common in 
Japanese colleges and universities.  

Methods: The proposed algorithm uses a direct chromosome representation Genetic Algorithm and 
implements constraint-based initialization and constraint-based crossover operations to satisfy the hard 
and soft constraints. An island model with varying crossover and mutation probabilities and an im-
provement approach called pre-training are applied to the algorithm to further improve the result quali-
ty. 

Results: The proposed model is tested on synthetic as well as real datasets obtained from Sophia Uni-
versity, Japan and shows acceptable results. The algorithm was fine-tuned with different penalty point 
combinations and improvement combinations.  

Conclusion: The comparison results support the idea that the initial population pre-training and the 
island model are effective approaches to improve the result quality of the proposed model. Although 
the current island model used only four islands, incorporating a greater number of islands, and some 
other diversity maintenance approaches such as memetic structures are expected to further improve the 
diversity and the result quality of the proposed algorithm on large scale problems.�
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1. INTRODUCTION 

 Examination Timetabling Problem (ETP), which tries to 
find the best examination schedule for schools, colleges, and 
universities, is a well-known NP-hard problem. The early 
research on ETPs can be roughly divided into four types of 
approaches: Cluster, Sequential, Constraint-Based, and 
Generalized Search [1, 2]. Generalized Search has another 
well-known name, i.e., meta-heuristic algorithms. In the 
early research on ETPs, simulated annealing algorithm [3, 
4] and Tabu search [5, 6] were the two main Generalized 
Search approaches� This paper focuses on a special case of 
the Examination Timetabling Problem, which is common in 
Japanese colleges and universities��Very few related studies 
can be found in the review literature, and many universities 
in Japan solve this tabling problem manually. Therefore, 
this study is an exploratory experiment to find an automated 
solution for this specific timetabling problem. The proposed 
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algorithm has been used to solve the presentation timeta-
bling problem for the Graduate School of Information Sci-
ence, Sophia University, Japan, in 2019, 2020, and 2021 
successfully. Moreover, in Japan, school and university staff 
work with Microsoft Excel. To reduce their workload, the 
proposed model is written in Excel VBA programming lan-
guage, which can be easily executed as a macro. 
 In recent years, with the development of ETPs research, 
meta-heuristic algorithms have become the mainline ap-
proach to solving ETPs, and many kinds of meta-heuristic 
algorithms are implemented. In 2005, Azimi [7] applied 
Simulated Annealing (SA) [8], Tabu Search (TS) [9], Ge-
netic Algorithm (GA) [10], and Ant Colony System (ACS) 
[11] to solve the ETP. The author further proposed three 
novel hybrid combinations of the four algorithms: Sequen-
tial TS–ACS, Hybrid ACS/TS, and Sequential ACS–TS 
algorithms and demonstrated that all three hybrid algorithms 
performed significantly better than the four non-hybrid algo-
rithms when tested on more than 10 different scenarios of 
the ETP. In 2006, Eley [12] applied two ant colony ap-
proaches: Max-Min and ANTCOL, for solving the ETP and 
compared these two approaches with other timetabling heu-
ristics. In 2015, Mandal & Kahar [13] applied the great del-
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uge algorithm to the partial exam assignment. In their ap-
proach, the total exams are ordered in advance, based on the 
graph heuristic and then partial exams are improved by the 
great deluge algorithm one by one until all exams have been 
scheduled. Compared to the state-of-the-art approaches, this 
novel method shows a competitive performance.�
 The Genetic Algorithm (GA) is one of the most popular 
optimization algorithms, widely used to solve theoretical 
and real-life problems. The discrete version of the GA is 
suitable to solve this type of optimization problem since, 
compared to other search algorithms, it is more robust in 
searching complex search spaces [14]. GA has developed 
into a mature technology for solving ETPs. In 2017, to save 
time for the university staff, Rozaimee et al. [15] construct-
ed the final exam timetable on the UniSZA computer system 
by using GA, while Shatnawi et al. [16] proposed a two-
stage approach optimization algorithm by running the 
Greedy Algorithm and GA in parallel, to help the Arab East 
College of High Education in Saudi Arabia solve the prob-
lem of scheduling exams. Their results show that the re-
quired number of conflicts, exam days, and available venues 
have been reduced successfully. In 2019, Dener and Calp 
[17] introduced a two-stage GA, where the first stage carries 
out the assignment of courses to sessions and the second 
stage assigns the students who participated in the test ses-
sion to the examination room. The system was designed to 
allocate students and supervisors more efficiently to reduce 
the number of rooms and time consumption. In 2020, Ezike 
et al. [18] hybridized the GA with the TS to develop the 
GATS algorithm for ETPs. In this hybrid algorithm, the TS 
is used to improve the child solutions created by the GA. An 
enhanced crossover operator is also introduced. The GATS 
is compared with the classic GA and TS on the problem of 
first Order Conflict Counts (OCC) and second OCC and it 
obtained higher quality solutions compared to the individual 
algorithms. Owing to the superior performance of GA in the 
ETP research, the discrete GA was chosen as the main algo-
rithm at the beginning of this exploratory project, and it 
shows satisfactory results in terms of quality and computa-
tion time. In 2021, Ngo et al. [19] applied the multi-
objective GA to an enrollment-based university course time-
table problem with around 3,000 students. The proposed 
TPS aims to create student schedules automatically before 
each semester, based on a student’s study preferences, the 
professors’ schedule, number of lecturers, available rooms, 
and many other conditions. The proposed algorithm shows 
its effectiveness in both computational cost and solution 
quality. 
 However, most of the optimization algorithms share the 
premature problem drawback, not only in ETPs but in near-
ly all kinds of optimization problems. Developing algo-
rithms and constructs to evade local optima traps is still a 
hotbed of research in optimization. 
 The island model is an effective approach for improving 
the population diversity and avoiding local optima. Many 
research studies show that the island model effectively im-
proves the result quality of the algorithms. Further, the is-
land model is naturally suitable for parallel computation, 
which allows multiple computation units to work together to 
increase the overall speed.  

  In 2016, Kurdi [20] applied the island GA to solve the 
shop scheduling problem. He proposed a new evolution 
model and migration selection mechanism to improve the 
island mode. Furthermore, in 2017, Palomo-Romero et al. 
[21] applied the island GA to solve the Unequal Area Facili-
ty Layout Problem. The results show that the island GA 
approach shows a better performance compared to that of 
the previous approaches. In 2020, García-Hernández et al. 
[22]�applied the island model to the Coral Reefs Optimiza-
tion Algorithm (IMCRO) to solve the Unequal Area Facility 
Layout Problem (UA-FLP). They made two different ver-
sions of the proposed approach, and both show superior 
performance. In 2020, Gozali et al. [23] proposed a local-
ized GA island model with a dual dynamic migration policy 
(DM-LIMGA) to solve the University Course Timetabling 
Problem (UCTP). Their study shows that the DM-LIMGA 
could solve both Telkom UCTP 2011/2012 and 2016/2017 
enrollment years problems with acceptable results. In 2021, 
Rezaeipanah et al. [24] solved the ETPs by introducing a 
hybrid method, IPGALS, based on the Improved Parallel 
Genetic Algorithm (IPGA) and Local Search (LS). In IPGA, 
there is an island GA with shared memory programming. In 
the local search, some unused genes in one chromosome are 
randomly swapped to generate new individuals. Their ex-
periments show that the IPGALS algorithm gives higher 
quality solutions than the other similar methods. However, 
the performance of IPGALS on some large instances is still 
limited. It cannot always reach a feasible solution on large-
scale problems.  
 Memetic algorithms that combine the population-based 
and local search algorithms are also found to improve the 
performance on ETPs. For instance, in 2018, Leite et al. 
[25] solved the ETP with the cellular memetic algorithm. 
The cellular memetic algorithm organizes the population in 
a cellular structure to provide a smooth actualization and 
improve the diversity of the population. The algorithm im-
proves partial functions of the incapacitated Toronto and 
capacitated ITC 2007 benchmark sets� One disadvantage is 
that the memetic algorithms are prone to call the fitness 
evaluation function many times. In our study, since more 
than half of the computation time is taken by the fitness 
evaluation, memetic algorithms are not considered applica-
ble.  
 This paper introduces an exploratory project that tried to 
solve a special ETP common in Japanese universities. As 
one of the most popular and mature technology in ETPs, GA 
has the advantage of applicability and robustness, and it is 
easy to be applied to a variety of problems. Therefore, GA is 
chosen to solve the proposed problem.  
 In the proposed timetabling problem, every final-year 
student must give a presentation to get his/her academic 
research evaluated. Each student is evaluated by three exam-
iners. The examination timetabling problem is related to 
allocating appropriate timeslots and rooms to students and 
examiners. It is preferable to put all the students from the 
same research group together in the same room for presenta-
tions in successive time slots. This is called a session. Any 
given session should be completed in a single day without 
being extended to the next day. These two constraints make 
the traditional GA no longer effective because the traditional 
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crossover operation can break the intact session with a high 
probability, resulting in numerous infeasible solutions.  

Therefore, a novel variant of GA is designed to satisfy 
this special case, where the constraint-based initialization 
and crossover operations are applied to satisfy the two con-
straints imposed on the sessions. The penalty point system is 
also implemented to optimize other soft constraints. How-
ever, during the research, it is found that the constraint-
based initialization and crossover operations usually cause 
premature convergence leading to unacceptable results. To 
improve the result quality of the proposed model, an im-
provement called initial population pretraining is adopted to 
balance the weight between different soft constraints. A 4-
island structure is applied to improve population diversity. 
Each island is assigned different crossover and mutation 
probabilities. This multiple-probability approach shows an 
improvement in the result quality. 
 The rest of the paper is organized as follows: Section 2 
describes the objective problems in detail. Section 3 ex-
plains the methodology of the proposed algorithm. Section 4 
contains the experiments and results. Section 5 contains the 
conclusion and directions for further research. 

2. MATERIALS AND METHODS 

2.1. Objective Problems

 The proposed model is designed to solve the thesis 
presentation and final exams of the Graduate School of In-
formation Science, Sophia University, Tokyo, Japan, which 
is different from the general ETPs. This ETP problem is 
common in Japanese universities. However, there are few 
research studies dealing with this specific problem. Moreo-
ver, since the scale of the problem is usually not very large, 
many universities still solve this problem manually.  

 At the end of the academic year, all final-year students 
in Japanese universities must give a presentation to explain 
and discuss their research. Each student’s presentation is 
evaluated by three examiners, one of which is the student’s 
supervisor, who is called the prime examiner, and the two 
other examiners are called deputy examiners. The examiners 
are decided in advance and cannot be changed. The univer-
sity requires putting the students with the same supervisor 
together in a session to conduct the presentations one after 
another. Moreover, the whole session should be held on the 
same day. These requirements break the conventional GA 
operations. In the common ETPs, each examination is inde-
pendent, which means a single examination could be moved 
independently wherever feasible. The common GA opera-
tions can be directly applied to solve the problem. However, 
in the proposed ETP, the arbitrary chromosome cut and join 
would break the session with a high probability, and it is 
hard to recombine the scattered session again by the arbi-
trary GA operation. To solve this problem, a constraint-
based initialization and crossover operation is proposed to 
satisfy the requirements automatically. 
 The hard constraints and soft constraints are listed be-
low. In the proposed algorithms, the hard constraints are 
satisfied by the chromosome operations. The soft constraints 
are satisfied by the penalty points systems. Therefore, the 

objective of the genetic algorithm is to find the solution with 
the smallest penalty points. 

2.2. Hard Constraints 

1. The students with the same supervisor should hold 
the presentations consecutively, which is called a 
session. 

2. Any given session should be held on a single day.
3. No student or examiner can be removed from the 

session. 
4. The number of available rooms is limited. The capac-

ity of the examination rooms is also limited. A room 
can hold a maximum of 10 presentations per day. 
Each room can only have one presentation at a time.  

2.3. Soft Constraints 

1. Examiners should be allocated to the appropriate 
time depending on the examiner’s schedule. 

 For each timeslot, the examiner has three states: “Availa-
ble”, “X”, and "∆". “Available” means the examiner is avail-
able for that time period. An “X” means the examiner is not 
available for that period. A "∆" means the examiner is availa-
ble during that period, but that timeslot should be avoided if 
possible. “X” has a higher priority than "∆", so the “X” is 
allocated with a higher penalty (Refer to Appendices). 
2. Examiners should be assigned to contiguous time 

slots, if possible.
3. The timetable should be compact. 
 For each day, the presentation should start from the very 
first timeslot and the time gap between any two sessions 
should be minimized.
4. An examiner should not be present in two places at 

the same time. (Note that, although from the feasibil-
ity perspective, this is a hard constraint, for the fast 
convergence of the proposed algorithm, it is classi-
fied as a soft constraint and is satisfied by the penalty 
point system). 

3. PROPOSED VARIANT GENETIC ALGORITHM 

 Fig. (1) presents the flowchart of the whole algorithm. 
The main body of the proposed algorithm is the discrete GA 
with direct chromosome encoding. The constraint-based 
initialization operation and constraint-based crossover oper-
ation, selection, mutation, and elitism are implemented to 
build the main body of GA. The pre-training operation is 
applied between the constraint-based initialization operation 
and the main iterations of GA to improve the result quality. 
The entire search population of GA is divided into 4 parts. 
Each part is called a sub-island, does independent GA com-
puting and shares its good solutions with the other islands 
via the migration operation.  

3.1. Chromosome Representation 

 The proposed model uses the direct chromosome method 
for encoding, where each chromosome corresponds to a 
specific arrangement of the generated blank position unit. 
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The total chromosome length is equal to the total number of 
available timeslots. For instance, assuming there is a two-
day presentation period, each day has 2 available rooms, 
each one can hold a maximum of 10 presentations per day, 
then the total chromosome length is equal to 2x2x10=40 
timeslots. The students will be numbered from 1 to the max-
imum number. Every non-zero number in the chromosome 
indicates a specific student with his/her examiners in a spe-
cific timeslot. Any timeslot that does not have an arrange-
ment for a student’s presentation is represented by a 0. Ac-
cordingly, a candidate chromosome is shown in Fig. (2). In 
this chromosome string, student 5 is allocated to timeslot 1, 
corresponding to the first presentation in Room A of the 
first day. Similarly, student 11 is allocated to timeslot 17, 
which corresponds to the 7th presentation in Room B on the 
first day, student 16 is allocated to timeslot 22, which corre-
sponds to the 2nd presentation in Room A on the second day, 
while there are no students allocated to Room B on the se-
cond day, which corresponds to the timeslots from 31 to 40. 

3.2. Constraint-based Initialization Operation 

 To satisfy hard constraints 1 and 2, which are described 
in Section 2, a constraint-based initialization operation is 
introduced. The operation is divided into two steps: 

 First, the students are grouped with the same supervisor 
to form a session. Then, the order of the sessions and the 
order of students within one session are reordered randomly. 

 Secondly, the first session is allocated to the first availa-
ble place in the first room on the first day. The second ses-

sion is allocated to the first available place in the second 
room, first day and so on. When all rooms have been allo-
cated to a session, the rest of the sessions will be randomly 
allocated to any feasible room. If there is no way to allocate 
all research groups to the proper position, an error is report-
ed to ask the staff to rearrange the rooms or add some new 
rooms. In this way, all initial possible solutions can satisfy 
the hard constraints automatically (i.e., the students from the 
same research group can be allocated together in a session, 
and all presentations can be held on the same day). The con-
strained initialization, while satisfying some of the initial 
conditions, can also maintain a certain degree of random-
ness to maintain the diversity of the initial population.  

3.3. Fitness Evaluation and Penalty System 

 The fitness evaluation of the proposed model uses the 
penalty point system to optimize the soft constraints in the 
proposed problem. In the penalty points system, a penalty is 
imposed if a candidate solution breaks any of the soft con-
straints. The proposed timetabling problem then becomes an 
optimization problem to find the solution with a minimum 
penalty. During the GA computation, the four soft con-
straints mentioned above could be further decomposed into 
six soft GA constraints (SGACs), with the specific distribu-
tion of the penalty points, as shown in Table 1. 
 The SGACs with larger penalty points are more likely to 
be avoided during the GA evolution. From priority consid-
erations, SGACs 1 and 5 are allotted the highest penalty 
points. The SGAC 2 “the examiner is allocated into 
timeslots with “∆” is another important penalty we want to 

Fig. (1). Flowchart of the proposed algorithm. (A higher resolution / colour version of this figure is available in the electronic copy of the 
article). 
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avoid. Therefore, it is allotted the second highest penalty 
points, followed by SGACs 3, 4, and 6. Moreover, in the 
real situation, SGACs 5 and 1 are two situations that must 
be avoided as far as possible; however, the other penalties 
have some degree of tolerance. Therefore, the penalty points 
of SGACs 5 and 1 should be far greater than the value of 
other penalties. 
Table 1. Soft GA constraints’ penalty points. 

S. No. Soft GA Constraints Penalty Points 

1 Examiner is allocated to period with X. 242 

2 Examiner is allocated to period with ∆. 60 

3 
Examiners are not placed in contiguous 

slots in the same session. 
10 

4 
Examiners are not placed in contiguous 

slots in successive sessions. 
9 

5
An examiner occurs in two places at the 

same time. 
390

6 
Session did not start during the 1st peri-
od in one room or two sessions are not 

continuous. 
1 per timeslot 

 The penalty points are also adjustable for different cases. 
If the examiner’s schedule is overcrowded, which means it 
is relatively hard to allocate all examiners in their available 
time, the penalty points of SGACs 3 and 4 are reduced to 
put more weight on avoiding the infeasible time of the ex-
aminer. On the other hand, if the schedule is not crowded, 
the penalty points of SGACs 3 and 4 can be increased to 
reach a better overall solution. The details are explained in 
the testing part. 

3.4. Selection Operator 

 Tournament selection [26] is chosen in the proposed 
model to enhance the convergence speed of the model. 
Tournament selection provides a controllable selection pres-
sure by changing the value of the tournament size [27]. In the 
proposed algorithm, the tournament size is set to 2 to obtain a 
low selection pressure and a high population diversity.  

3.5. Constraint-based Initialization Crossover Operator 

 In this paper, a constraint-based crossover operation is 
designed to satisfy the hard constraints. During the con-
strained crossover operation, the chromosomes have been 
decomposed into two parts. The first problem is the optimi-
zation of the examiner’s schedule problem, which corre-

sponds to SGACs 1 and 2 in Table 1. The second problem is 
to make sure an examiner is placed contiguously in the same 
session as well as in the adjoining sessions. This situation 
corresponding to SGACs 3 and 4 in Table 1 is referred to as 
the examiner’s time continuity problem. Therefore, the con-
straint-based crossover must achieve the exploration for 
both the examiner’s schedule problem search region and the 
examiner’s time continuity problem search region. In the 
proposed model, a variant multipoint crossover has been 
applied to achieve the information exchange for both the 
examiner’s schedule problem and examiner’s time continui-
ty problem, meanwhile satisfying the hard constraints 1 and 
2 to maintain the feasibility of each chromosome. 
 In the first step, two parent chromosomes will be select-
ed. Then, for each parent chromosome, two random ses-
sions, session A and session B, will be selected. Session B 
could be either real sessions or zero sessions. A zero session 
means no session is to be placed in these timeslots. In this 
algorithm, a real session has a 25% probability of crossover 
with a zero session.  

Then session A on the first parent chromosome and ses-
sion B on the second parent chromosome will be swapped to 
get two new chromosomes. Similarly, session B on the first 
parent chromosome and session A on the second parent 
chromosome will be swapped. Since different sessions 
could have different numbers of students, once a session 
with fewer students is swapped with a session with more 
students, the algorithm will check if there is enough blank 
space beside the shorter session to fill the position of the 
longer sessions. If not, the model will then check if it is pos-
sible to move the adjacent session up or down to vacate 
enough space. However, the moving of the session should 
maintain this session within one single room and one single 
day. In this way, the exchange of gene segments can be 
achieved, maintaining the integrity of each session, and en-
suring its completion in a single day.  
 For example, consider a problem with 5 sessions, (1, 2, 
3, 4), (5, 6, 7)], (8, 9, 10, 11), (12, 13, 14), and (15, 16), and 
there are two parent chromosomes shown in Fig. (3). 

 Assuming that sessions (8-11) and (15, 16) are selected, 
session (9, 8, 10, 11) from parent chromosome 1 and ses-
sions (15, 16) from parent chromosome 2 will be swapped. 
Similarly, the session (15, 16) from parent chromosome 1 
and sessions (8-11) from parent chromosome 2 will be 
swapped as well. However, since the length of the session 
(15, 16) is shorter than that of session (9, 8, 10, 11), and in 
parent chromosome 2 there are not enough blank timeslots 
beside the session (15, 16), session (12-14) in the parent 
chromosome 2 will be moved two timeslots forward to va-
cate enough positions for sessions (9, 8, 10, 11). The off-

Fig. (2). Chromosome representation example. (A higher resolution / colour version of this figure is available in the electronic copy of the 
article). 
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spring chromosomes after the crossover operation are shown 
in Fig. (4). 
 However, compared to the traditional crossover, the 
amount of information exchanged by this constraint-based 
crossover is relatively limited since only two sessions can be 
exchanged during each crossover operation. Moreover, as 
mentioned in Section 4.3, the constraints with higher priori-
ty are given much higher penalty points. The limited infor-
mation exchange and uneven proportion of penalty points 
usually make the algorithm fall into a local optimal solution 
with a high penalty score. To improve the result quality, an 
improvement approach called initial population pretraining 
and island model are applied to the proposed algorithm as 
described in Sections 3.8 and 3.9. 

3.6. Mutation Operator 

 Mutation operator can be divided into two steps. In the 
first step, one session in the chromosome is selected first 
and then two random students in this session are swapped. 
In the second step, a new session is selected randomly. This 
session is randomly moved up or down for several timeslots 
to an available position. 

3.7. Elitism 

 Elitism strategy can decrease genetic drift by passing the 
most fitting individuals directly to the next iteration without 
genetic operations [28, 29]. However, the increased number 
of remaining elitism individuals can increase the evolution 
pressure, which may cause premature convergence [30]. To 
preserve the diversity of the population in the proposed 
model, only the first best solution can be retained for the 
next iteration. 

3.8. Initial Population Pre-training Operator 

 As mentioned in the crossover part, the proposed prob-
lem can be decomposed into two optimization problems: the 
examiner’s schedule problem and the examiner’s time con-
tinuity problem. However, it is usually hard for the proposed 
algorithm to solve both the objective problems simultane-
ously. If larger penalty points are applied to the examiners’ 
schedule problem, the examiners’ time continuity problem 

will be stuck in a local optimum with greater probability. 
Similarly, larger penalty points on the examiner’s time con-
tinuity problem could cause a bad result in the examiners’ 
schedule problem.  
 In the proposed model, depending on the priority of the 
SGACs in the real situation, the examiners’ schedule prob-
lem is given higher penalty points. Moreover, in the pro-
posed algorithm, the constraint-based crossover makes a 
concession on the search ability to satisfy the hard con-
straints. Therefore, this constraint-based crossover operation 
cannot make enough information exchange and cannot keep 
the diversity of the population. During several runs of the 
variant GA algorithm, it is found that the algorithm usually 
gets stuck into the local optimal solution with high penalty 
points on SGACs 3 and 4. For the sake of keeping the bal-
ance between the examiners’ schedule problem and the ex-
aminers’ time continuity problem, and to further improve 
the diversity of the population, we propose an improvement 
approach, namely, initial population pretraining, which has 
been proved to be effective in enhancing the result quality. 
 In 1993, Schoenauer and Xanthakis [31] introduced a 
genetic optimization based on the Behavior Memory Para-
digm. The method first only considers only one constraint. 
When enough feasible individuals satisfy this constraint, the 
algorithm will then consider the next constraint and eventu-
ally, all constraints can be satisfied. 
 The initial population pretraining operations in the pro-
posed model refer to this idea. The initial population pre-
training operation is conducted on the population before the 
main iterations of GA. During pretraining operation, the 
populations are evaluated by the SGAC 3 only for serval 
iterations. In this way, some good solutions to the examin-
ers’ time continuity problem can be generated in advance to 
reduce the search pressure on the examiner’s time continuity 
problem. However, the iteration number of pretraining can-
not be too high to avoid the homogeneity of the initial popu-
lation. In the proposed model, the pretraining operation runs 
no more than 3 iterations. The test result shows that the ini-
tial population pretraining can improve the result quality. 
Fig. (5) shows the flowchart of the initial population pre-
training operation. 

 
Fig. (3). Constraint-based Initialization crossover operator, parents’ example. (A higher resolution / colour version of this figure is available 
in the electronic copy of the article). 
 

 
Fig. (4). Constraint-based initialization crossover operator. (A higher resolution / colour version of this figure is available in the electronic 
copy of the article). 
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Fig. (5). Flowchart of the initial population pre-training operator.

 

3.9. Island Model 

During the test of the single-series GA model, premature 
convergence occurred several times. This is because the 
proposed crossover operation sometimes cannot reach 
enough wide search region and therefore gets stuck in the 
local optimal solution. 

 A lot of research shows that the island GA delivers faster 
performance and higher solution quality than the conven-
tional GA [32-34]. There are several sub-Gas in the island 
model and each of them does the iteration independently 
most of the time. For every certain number of iterations, the 
islands share their fitter individuals with each other [35]. 
This kind of cooperation between islands can increase the 
convergence speed and maintain some degree of independ-
ence of the sub-GA groups to increase the diversity of the 
population and reach a wider search region [36, 37]. There-
fore, the island GA model is used to improve the diversity 
of the populations and avoid premature convergence. 
 Since the scale of the proposed problem is not too large, 
4-island model is applied to the proposed algorithm. During 
the migration operation, 4 islands will be paired two by two 
randomly. For each island pair, the island with a better cur-
rent optimal solution will give its current optimal solution to 
the other island and replace the position of a random indi-
vidual in the target island. Furthermore, in the proposed 
model, the migration interval is equal to 1, which means the 
migration operation happens for every iteration. Moreover, 
each island has different crossover mutation probabilities 
(���� ��) to further improve the population diversity of the 

whole system and arrive at quality solutions. The �� are 0.5, 
0.6, 0.7 and 0.8 respectively, the �� are 0.1, 0.2, 0.6 and 1.0 
respectively. The sub-GAs with lower �� �and ���are used to 
maintain the convergence efficiency, and the responsibility 
of the sub-GAs or islands with higher ��and ��are used to 
reach a wider search region. The test results show that the 
island model with multi-crossover and multi-mutation ratios 
could obtain a better solution than the solution of island GA 
with the same ��and ��. 

4. RESULTS AND DISCUSSION 

 In Section 5, three different datasets have been used, 
where datasets 1 and 2 are synthetic and dataset 3 is the real 
data from Sophia University. Dataset 1 and dataset 2 have 
the same students and examiner list, which contains 50 stu-
dents, 18 sessions, and 39 examiners. The difference is that 
dataset 1 has more crowded examiners’ schedules, which 
means the examiners have more unavailable time. Dataset 3 
contains 31 students, 11 sessions, and 25 examiners. During 
the testing, each variant of the algorithm is tested 10 times 
to get average performance. 
 The test configuration information is shown in Table 2. 
Table 2. Test configuration information. 

OS System Windows 10 

CPU Intel Core (TM) i5-8300H CPU @ 2.30GHz 

RAM 8GB 

GPU NVIDIA GeForce GTX 1060 Max-Q Design 

Microsoft Office Edition Microsoft Office 365 (2021) 

 
 As mentioned in the introduction, to reduce the staff 
workload, the proposed model was written in Excel VBA 
programming language. Although the computation speed for 
this programming language is much slower compared to the 
mainstream programming languages, such as C++, Java, or 
Python, it is acceptable for practical applications. Hence, 
this paper will focus on the iteration number for perfor-
mance comparison instead of the practical computation 
time.  

4.1. Test 1 Various Penalty Points Combinations 

 In this part, several different combinations of penalty 
points (CPP) are applied to datasets 1 and 2 to check how 
the performance of the algorithm varies with the change of 
the penalty points under different situations. The multi-
crossover probability is 0.5, 0.6, 0.7, and 0.9, respectively, 
and the multi-mutation probability is 0.1, 0.2, 0.5, and 1, 
respectively, for each island. The total population size is 200 
(50 for each island). Table 3 shows the results in detail. 
 In Table 3, C1 to C6 correspond to the constraints from 
1 to 6. The term “Violations” refers to the number of con-
straints that have been violated in the solution. A smaller 
value corresponds to a better result. The term “Generations” 
means how many generations the algorithm uses to output 
the final answer. A smaller value corresponds to a faster 
computation speed. 
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 CPPs 1, 2, and 3 show that the increase in the penalty 
points for constraints 1, 2, and 5 (C1, C2, and C5) reduces 
the number of violations for the corresponding constraints. 
It will also increase the violations for C3 and C4. Similarly, 
compared to CPPs 1 and 4, the penalty points for C3 and C4 
decrease violations for C3 and C4 but an increase for C1, 
C2, and C5. In addition, the increase of penalty points for 
C1, C2, and C5 leads to an increase in the number of com-
putation generations, which corresponds to a lower compu-
tation speed, but better results are obtained. 

 Now let us consider the CPPs from 1 to 3 and CPPs from 
8 to 10. For CPPs from 1 to 3, the C1 and C2’s violation 
numbers decrease with the increase of C1 and C2’s penalty 
points. However, this phenomenon does not happen on 
CPPs 8 to 10, which are tested under a less crowded exam-
iner schedule. This means the variation of the penalty points 
on the algorithm’s performance depends on the different 
datasets. Therefore, the penalty points should be designed 
appropriately, based on the density of the examiner’s sched-
ule and the attendance list. 

 Compared to CPPs 5, 6, and 7, it can be concluded that 
an extremely high penalty point on a constraint will increase 
violation numbers for all other constraints. Therefore, the 
extremely high penalty points should be avoided during the 
algorithm design. 
 Penalty point combination of CPP 5 is the relatively best 
combination for dataset 1, which we have obtained in our 

experiments. Therefore, this combination is chosen finally 
in the proposed algorithm and will be applied to 2 and 3. 

4.2. Test 2 Various Improvements 

 In test 2, three different variants of the proposed model 
are tested and compared, where model 1 is the proposed 
model, model 2 is the model without pretraining approach, 
model 3 is the proposed model with single �� and ��, and 
model 4 is the single-GA model without the islands. 
 Model 1: 4-island structure, pre-training and multiple 
crossover and mutation probabilities. 
 Model 2: 4-island structure and multiple crossover and 
mutation probabilities (without pretraining). 
 Model 3: 4-island structure, pre-training and single 
crossover and mutation probabilities. 
 Model 4: Single-GA structure and pretraining. 
 Two datasets, dataset 1 and dataset 3, are used. For da-
taset 1, the total population size for each model is the same, 
which is equal to 120. For the 4-island model, the popula-
tion size is divided equally into 4 parts; therefore, each is-
land contains 30 individuals. The pretraining run 3 genera-
tions for dataset 1. For dataset 3, the total population size for 
each model is the same, which is equal to 80, and therefore 
each island contains 20 individuals. The pretraining runs 2 
generations for dataset 3. For model 1 and model 2, the mul-
ti-crossover probability is 0.5, 0.6, 0.7, and 0.9, respectively, 
and the multi-mutation probability is 0.1, 0.2, 0.5, and 1, 

Table 3. Result of test 1. 

- 

Dataset 1 

Penalty Points Violations 
Generations 

C1 C2 C3 C4 C5 C6 C1 C2 C3 C4 C5 C6 

CPP 1 20 20 20 20 20 1 2 1.3 0.8 0.4 1.2 10.2 178.6 

CPP 2 40 40 20 20 40 1 0.7 0.6 2.6 1.3 1.1 12 176.1 

CPP 3 100 100 20 20 100 1 0.2 0.6 2.5 1.5 0.3 11.1 234.1 

CPP 4 20 20 40 40 20 1 2.1 3.2 0.1 0.2 2.4 9 182.3 

CPP 5 242 60 10 9 242 1 0.2 1 1.8 2 0 11.3 236.1 

CPP 6 242 60 10 9 390 1 0.6 1.2 2.4 1.8 0.1 15.1 240.9 

CPP 7 500 60 10 9 242 1 0.1 1.8 4.3 2.4 0 13.5 183.5 

- 

Dataset 2 

Penalty Points Violations 
Generations 

C1 C2 C3 C4 C5 C6 C1 C2 C3 C4 C5 C6 

CPP 8 20 20 20 20 20 1 0.2 1.2 1 0.4 1 8.5 155.6 

CPP 9 40 40 20 20 40 1 0.3 1 0.7 0.9 0.3 10 176.1 

CPP 10 100 100 20 20 100 1 0.1 0.5 2.4 0.9 0 13 178.5 

CPP 11 20 20 40 40 20 1 0.8 1.7 0.2 0.1 1.2 8.1 163.1 

CPP 12 242 60 10 9 242 1 0 1.1 1.4 1.4 0 11.7 190.6 
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respectively, for each island. For models 3 and 4, the ��and 
�� are 0.8 and 0.5, respectively. The details and reasons for 
the parameter decision of �� �and �� will be discussed in 
section 5.3, test 3. The toleration for the stop condition is 30 
iterations. Tables 4 and 5 show the testing results for dataset 
1 and dataset 3, respectively. 
 Comparing with the results of models 1 and 2 for dataset 
1, model 1 obtains a lower violation number than model 2 on 
C1, C2, and C3, and keeps the same violation numbers on C4, 
C5 and C6. However, compared to the generations computa-
tion of model 2, that of model 1 increases from 231.2 to 
245.3. For dataset 3, compared to model 2, model 1 obtains a 
lower violation number than that of model 2 on C2, C3, and 
C4, and a higher violation number on C1. However, the gen-
erations computation of model 1 decreases from 150.2 to 
130.8, which corresponds to a faster computation speed. 
 By comparing with model 3 and model 4, the significant 
result quality improvement shows that under the same ��and 
��, the island model can help avoid premature convergence 
and improve the result quality. 

4.3. Test 3: Various Crossover and Mutation Probabili-
ties 

 In this test, four different combinations of �� �and �� are 
applied to the four islands of the proposed algorithm to see 
how the different combinations will affect the performance 
of the algorithm. Datasets 1 and 3 are used. Except for the 
��and ��, all other parameters are the same as those in Test 
2. Table 6 shows the specific combinations of ��and �� for 
each island. Tables 7 and 8 show the comparison results. 
 The results show that combinations 1 and 3 produce bet-
ter result quality compared to that of combinations 2 and 4, 
which means the multi-crossover and mutation probabilities, 
or a �� around 0.5 would achieve a better result quality. 
This is because the session movement operation of the mu-
tation could help the GA population reach a wider search 
region. However, the performance of combination 4 shows 
that an overlarge ��, on the contrary, would reduce the re-
sult quality. 
 Moreover, the result on dataset 1 also shows that the 
result quality of combination 1 is better than that of combi-

Table 4. Result of test 2 Dataset 1. 

- 
Violations 

Generations 
C1 C2 C3 C4 C5 C6 

Model 1 0.1 1 1.7 2.6 0.1 13.4 245.3 

Model 2 0.3 1.3 1.9 2.6 0.1 13.3 231.2 

Model 3 0.2 0.9 3.2 3 0.2 16.1 245.1 

Model 4 0.8 2.3 5.1 7.9 0 21.7 116.7 

 
Table 5. Result of test 2 Dataset 3. 

- 
Violations 

Generations 
C1 C2 C3 C4 C5 C6 

Model 1 0.2 6 2.5 0.7 0 5.7 130.8 

Model 2 0 7 3.5 0.8 0 6.2 150.2 

Model 3 0 7 2.4 0.5 0 5.6 142.6 

Model 4 0.1 6.5 5.4 1.6 0 13.7 89.7 

 
Table 6. Test 3 combinations of �� and ��. 

- 

pc pm 

Island Island 

1 2 3 4 1 2 3 4 

Combination 1 0.5 0.6 0.7 0.9 0.1 0.2 0.5 1 

Combination 2 0.7 0.7 0.7 0.7 0.1 0.1 0.1 0.1 

Combination 3 0.8 0.8 0.8 0.8 0.5 0.5 0.5 0.5 

Combination 4 0.8 0.8 0.8 0.8 1 1 1 1 
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nation 3, which means the multi-crossover and mutation 
probability have a better performance on the increased data 
size. 

CONCLUSION 

 This paper focuses on a specific examination timetabling 
problem that commonly occurs in Japanese universities and 
proposes a variant genetic algorithm approach to solve the 
problem. Constraint-based initialization and crossover oper-
ations are used to satisfy the hard constraints, and a penalty 
system is implemented to optimize the soft constraints. To 
improve the result quality, the island model and the initial 
population pre-training, which optimize partial objective 
problem in advance for several iterations, are applied. The 
proposed model is compared to its three variants that do not 
include the above improvements. The positive comparison 
results support the ideas that the initial population pre-
training and the island model are effective approaches to 
improve the result quality of the proposed model. Addition-
ally, the algorithm performs better with multi-crossover and 
mutation probabilities or large ��. 
 However, to compromise the feasibility of the problem 
constraints, the constraint-based crossover operation cannot 
reach wide-enough search space during the computation. 
Therefore, the solution often got stuck into local optima. 
Even though the pre-training and island model could solve 
this problem in a way, the research on a better crossover 
approach for this special ETP is still needed. Although the 
memetic structure is not applied in this project owing to the 
long computation time, it is expected to apply the memetic 
structure [25, 38] and some other diversity maintenance 
approaches [39, 40] to the proposed algorithm to further 
improve the result quality in other projects. Finally, instead 

of GA, other algorithms such as Simulated Annealing, ant 
colony approaches, Particle swarm optimization [41], and 
Greedy-Late Acceptance-Hyperheuristic [42] are expected 
to be implemented to this proposed ETP as well. 
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CPP = Combinations of Penalty Points  
ETP = Examination Timetabling Problem  
GA = Genetic Algorithm  
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Table 7. Test 3 comparison results Dataset 1. 

- 
Violations 

Generations 
C1 C2 C3 C4 C5 C6 

Combination 1 0.1 1 1.7 2.6 0.1 13.4 245.3 

Combination 2 0.1 2.2 2.1 2.3 0 14.7 251.9 

Combination 3 0.2 0.9 3.2 3 0.2 16.1 245.1 

Combination 4 0.6 1.7 2.9 3.2 0.1 16.4 234.8 

 
Table 8. Test 3 comparison results Dataset 3. 

- 
Violations 

Generations 
C1 C2 C3 C4 C5 C6 

Combination 1 0.2 6 2.5 0.7 0 5.7 130.8 

Combination 2 0.4 4.9 4.1 0.4 0 5.2 149.8 

Combination 3 0 7 2.4 0.5 0 5.6 142.6 

Combination 4 0.1 6.5 2.8 1.1 0 7.3 126.2 
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