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 Abstract: Aims: The purpose of this study is to determine under what conditions, such as noise and 
malfunction, successful consensus achievement in swarm robotics is possible. 

Background: Swarm robots can be used to solve exploration problems, such as the best-of-n problem. 
Consensus achievement plays a crucial role as the swarm must collectively agree on a solution. This 
task can be even more challenging considering noise and malfunctioning or rogue agents. 

Objective: This study aims to determine how robust the consensus achievement algorithm is against noise 
and rogue agents, considering the effect of adding memory to the agents and further parameter tuning. 

Methods: We implement a baseline based on the democratic honeybees algorithm and investigate the 
performance and robustness of the consensus achievement during a number of computational 
experiments. In particular, the number of agents in the swarm, the number of iterations, the number of 
positions an agent can visit per iteration, the number of neighbors an agent shares its best option with, 
and the majority threshold defining the majority based on a fraction of agents in the swarm, and the 
minimum number of iterations to achieve consensus are investigated regarding their impact. 

Results: For better performance, memory has been implemented so that each agent remembers and 
retains their previous highest quality score if no one better has been found in the current exploration 
phase. We show that the algorithm is viable and offers robustness in the considered scenarios when 
memory is added. In particular, we establish a baseline for the democratic honeybees algorithm and 
ascertain adequate parameter values to ensure the algorithm's best performance. The algorithm is 
sufficiently robust against noise, and to an extent, against rogue agents. Furthermore, parameter tuning 
also proved to help the swarm explore very large search spaces.  

Conclusion: The consensus algorithm appears sufficiently effective under adverse conditions such as 
noise and rogue agents, especially when countermeasures are considered. 

Other: Further scenarios such as specific communication topologies could be investigated in future 
research. 
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1. INTRODUCTION 

  The decision-making of a collective of agents, called a 
swarm, is often not traceable to any single agent and is 
denoted as collective decision-making. Each agent of this 
swarm has only partial knowledge concerning the global 
solution to which the swarm has to consent. Therefore, the 
agents need to share their partial knowledge with the other 
agents and collectively agree on a particular solution. This 
principle is called self-organization. 
 

*Address correspondence to this author at the Institute for Information 
Systems, University of Applied Sciences and Arts Northwestern 
Switzerland, Basel, Switzerland; E-mail: thomas.hanne@fhnw.ch  

 This has been observed in multiple swarms of social 
insects in nature [1, 2]. Collective decision-making can be 
divided into two categories: consensus achievement and task 
allocation. We investigate the consensus achievement. 
Swarm robotics aims to develop scalable and robust systems 
to noise along with malfunctioning or rogue agents. 
Accordingly, swarms are designed to have no central 
authority; we speak of a decentralized swarm. A specific task 
for swarm robots is to solve the best-of-n problem, especial-
ly if n > 2 [3]. Here, the agents collect � different options 
and need to consent as a swarm to a particular option. 

 In one study [4], the authors used a nature-inspired 
model that uses the democratic behavior of honeybees, 
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inspired by Seeley’s study on Honeybee Democracy [5]. In 
this approach, honeybees individually explore new positions 
for a hive, but decide as a collective for the best position to 
solve the best-of-n problem. As it is a unique approach in 
the literature, we set a baseline for future research of the 
algorithm, by implementing the approach and tuning its 
parameters. 

 Because of the nature of collective decision-making, the 
swarm might be highly susceptible to malicious or rogue 
agents. Such rogue agents can influence the performance of 
the swarm in various ways. They either slow down the 
consensus achievement or make it impossible in a limited 
time frame. Moreover, such rogue agents may cause the 
swarm to make a wrong decision and possibly fail to 
complete its task, which should not occur when using this 
algorithm in a real deployment [6]. Recent research 
addressing these issues uses the emerging technology of 
blockchain to track rogue agents and eventually exclude 
them from the swarm [6, 7]. Further discussions of the 
problem are provided in [8-13]. However, none of these 
publications investigate the influences of parameters that 
affect the success of consensus achievement under the 
conditions of such rogue agents. This also applies to the 
effects of noise, which can be disastrous as it gives the agent 
a false sense of an option when it has been altered by 
environmental changes, sensor malfunctions or inaccuracies 
[4]. 

2. DEMOCRATIC HONEYBEE ALGORITHM 

 In [4] the best-of-n problem is approached using a finite 
state machine with four states. The agents explore distinct 
parts of the entire search space, visit three random positions 
and save the best scores in an exploration table (exploration 
state). The agents then communicate their best opinion to 
their neighbors, with implicit hints as to where to find it 
(dissemination state). In the broadcast state, the agents vote 
for the bestoption. Consensus is only achieved if the 
majority votes for the same option three consecutive times, 
and exploration can be ended (final state). In Algorithm 1, 
we provide the pseudo-code for our implementation of the 
honeybees’ democratic behavior. The full code for our 
implementation in Python can be found in our public GitLab 
repository1. 

 Note that the general convergence of related algorithms 
has occasionally been analyzed in the literature, also under 
noise conditions (e.g. [14]). However, the analysis focuses 
on general properties such as almost sure convergence, 
while it is usually not possible to derive specific results such 
as achieving consensus with limited time. We therefore 
focus on an experimental approach to analyze these aspects. 

 From the description of the algorithm, it is clear that 
there are many parameters that can be adjusted for efficient 
results or even a robust algorithm (Table 1). ��������������������������������������������������������
1https://gitlab.com/anhue/hyperparameter-analysis-of-the-
democratic-behaviour-of-swarm-robots 

Algorithm 1. Democratic honeybee behavior 

Result: Position and value of the solution. 

Initialize population with n_visits random locations  
per agent; 

for i iterations do 

 Evaluate quality scores for the positions of each 
agent; 

 Evaluate the best position for each agent, taking last 
best position into consideration; 

 Advertise the best position to other agents to visit in 
next iteration; 

 Vote for best position; 

 if consensus was achieved n_consensus times con-
secutively on the best position then 

  Solution found; 

end  
 
Table 1. Parameters of democratic honeybee swarm. 

Parameter Description 

�������� The total number of agents in the swarm. 

�����������	 

The total number of iterations with which a 
swarm can run through its optimization loop. If 
this number is reached, the swarm stops its opti-

mization without achieving consensus. 

�������� 
The number of positions an agent can visit per 

iteration. 

����������� 

The number of neighbors with whom an agent 
shares its best option. Since an agent will visit this 

position in the next iteration, the parameter 
�������� should be greater or at least equal to 

�����������. 

�������	���������� 
Setting a threshold for a majority based on a 

fraction of agents in the swarm. This parameter 
should be within �����. 

����������� 

Setting a threshold for the number of iterations 
the swarm has to consent to consecutively for the 
same option to achieve consensus. To consent to 
an option in a given iteration, the majority has to 

vote for this option. 

 

3. EXPERIMENTS 

 To measure the performance of the swarm, we use two 
quality indicators. Firstly, the best solution of the swarm is 
compared with the true best solution of the search space, 
resulting in a relative deviation [in %] from the true best 
solution. If the relative deviation is ��� the swarm has 
obviously found the true best solution. On the other hand, 



The Chinese Journal of Artificial Intelligence, 2022, Vol. 1, No. 2            e090322201940 Hügli et al. 

26 

we measure the number of iterations needed to achieve 
consensus, because speed is also an important factor. To 
reduce bias, we always run a swarm 10 times with the same 
configuration. 

 As a search space we set up the well-known Rastrigin 
function in discrete form. Rastrigin is a highly multi-modal 
function with a symmetric structure and bounds defined as 
(−5.12, 5.12) and has roughly ��� local minima in the 
dimension ���with a global minima at the position (0, 0) 
with a value of � [15]. In our case, we transform this 
continuous function into a discrete function in the form of a 
matrix, which we call search space. The search space is 
populated in different sizes with the steps � and � 
(corresponding to � and � in the continuous function), 
which leads to different sampling rates and thus to the 
resolution of the original continuous function. As we have 
to be sure that the global minimum is also sampled in our 
discrete matrix with a value of �, we have to use an uneven 
sampling rate for � and �. Therefore, we will always find 
the global minimum in the centre of the matrix. 

 To create a starting point, the first experiments were 
performed under perfect conditions, i.e. no noise was fed in, 
and no rogue agents were used, see algorithm 2. All 
experiments were done and plotted against the relative 
deviation from the global minima and against the number of 
iterations needed to achieve consensus. To start initial 
experiments, the influence of the number of agents 
�������� � {5, 10, 15, 30, 100} and the search space size � 
{25, 121, 255, 441, 961, 10201, 90601}�was investigated 
(Figs. 1 and 2). 

 Towards the end, we tried to stick to the parameters used 
in [4], but adaptations were necessary. Parameters for our 
algorithm with the original values from [4] in parenthesis, 
are: number of agents (15), number of rogue agents (0), 
number of visits per individual (3), number of rounds 
necessary to achieve consensus (3), noise (0), majority 
threshold (0.5) and search space (255). 

 With the setup found, further experiments were 
conducted to evaluate the impact of rogue agents or noisy 
values in the algorithm to determine its robustness. When 
implementing rogue agents, they were given a position 
corresponding to a solution that they were to advertise, 
disregarding other positions. For the purpose of bias 
reduction, four different experiments were performed, using 
four different positions with small to large deviations from 
the true best solution. 

 Because agents can explore more of the search space 
with more visits, we test how we can take advantage of this 
parameter to achieve increased robustness in the swarm. The 
number of rogue agents used was � {1, 2, 3, 4, 5, 6, 7}�and 
the number of visits �������� � {2, 3, 4, 5, 6, 7, 8} 

 As the number of neighbors and visits determines how 
the search space is explored, we suspect that tuning them 
can improve the algorithm’s performance under perfect  
but also under manipulated conditions. Therefore, we test 
the influence of the number of neighbors ����������� � 

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10} and the number of additional 
visits �������� � {1, 2, 3, 4, 5, 6, 7, 8}. 

 Subsequently, we experimented with the value of the 
number of consensus ���������� � {1, 2, 3, 4, 5, 6, 7, 8},�as 
this should have an impact on the consensus achievement of 
the swarm. 

 To evaluate the impact of the majority threshold on 
consensus achievement, the values �������	���������� � 
{0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}were tested. 

 To finalize the comparison of multiple parameters, we 
compare the two parameters that dictate how a swarm 
achieves consensus. In this case, the number of rounds to 
achieve consensus ����������� � ��� �� �� �� �� �� �� �� and 
the majority threshold majority_threshold � {0.2, 0.3, 0.4, 
0.5, 0.6, 0.7, 0.8, 0.9} were observed. 

  When considering noise, a value was sampled from a 
normal distribution, multiplied by a factor ����� and 
inserted into the quality score found by an agent. The 
absolute values of noise are ���� {0.0, 0.5, 1.0, 5.0, 10.0, 
20.0, 30.0}. 

4. RESULTS 

 We started by evaluating the differences in the relative 
deviation from the best solution in the search space and the 
number of iterations needed to achieve consensus when the 
search space is expanded (Fig. 1). We observe that as the 
search space increases, the accuracy of the swarm tends to 
get worse, although the number of iterations needed to 
achieve consensus seems to be constant, with medians 
between five and seven. For the subsequent experiments we 
have chosen the search space with size ��� as the baseline 
as it has a similar performance to the search spaces with size 
(255, 441), but is the largest of them. 

 When plotting the effect of the number of agents (Fig. 2) 
in the swarm against the predefined search space, we see 
that the more agents a swarm has, the better the solution 
gets. The original paper [4] defined a swarm with �� agents 
showing promising results. Although they need the most 
iterations to achieve consensus, we use this as our baseline. 

 To test the robustness of the algorithm, the number of 
rogue agents were increased from zero to ten, with a quality 
score of 57.849, corresponding to the relative deviation of 
74.3% to the best solution (Fig. 3). We observe that the 
algorithm behaves robustly against a maximum of seven 
rogue agents and completely collapses with eight rogue 
agents. Therefore, this is expected behavior, as rogue agents 
> = 8 directly lead to a majority (swarm with �� agents). 
However, the number of iterations needed to achieve 
consensus increases slightly as the number of rogue agents 
increases, unless the number of rogue agents is > = 8, in 
which case the algorithm converges to the wrong solution 
very quickly. It is also worth mentioning that the algorithm 
most often does not consent to one solution. 

 When we improve the quality score for the rogue agents 
to 33.114, which corresponds to a relative deviation 
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Fig. (1). Search space size plotted against relative deviation from true best solution and number of iterations needed. (A higher resolution / 
colour version of this figure is available in the electronic copy of the article). 

 

 
Fig. (2). Number of agents plotted against deviation from true best solution and number of iterations needed. (A higher resolution / colour 
version of this figure is available in the electronic copy of the article). 

 

 
Fig. (3). Number of rogue agents advertising the quality score 57.849 against deviation from true best solution and number of iterations 
needed. (A higher resolution / colour version of this figure is available in the electronic copy of the article). 
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of 42.5% from the true best solution, we observe similar 
behavior (Fig. 4). Again, the swarm collapses completely 
collapses with rogue agents > = 8. Also very well 
interpretable is the graph to the right as we see that the time 
to achieve consensus increases from zero to seven rogue 
agents and is static for eight and nine agents as rogue agents 
completely take over the swarm and achieve consensus after 
three iterations. 

 By increasing the quality score for the rogue agents to 
18.493, with a corresponding relative deviation of 23.8%, we 
observe an increased influence of the rogue agents (Fig. 5). 
Here the swarm starts to struggle with seven rogue agents, as 
in two runs the swarm collapses and is led astray by the rogue 

agents. With rogue agents > = 8 the swarm completely 
collapses. We also see that the overall performance of the 
swarm has decreased compared to the previous two. 

 Finally, we experiment with rogue agents advertising a 
quality score of 9.291, which corresponds to a relative 
deviation of 11.9% and obtain results very close to the 
correct quality score of � (Fig. 6). Here, even a single rogue 
agent can lead the swarm astray. Nevertheless, in most runs 
the swarm is able to protect itself against a single rogue 
agent. With rogue agents [2, 3, 4] the swarm is led astray 
most of the time, but manages in several runs to achieve 
consensus with a better solution than that advertised by the 
rogue agents. With rogue agents > = 5 the swarm collapses 

 
Fig. (4). Number of rogue agents advertising the quality score 33.114 against deviation from true best solution and number of iterations 
needed. (A higher resolution / colour version of this figure is available in the electronic copy of the article). 

 

 
Fig. (5). Number of rogue agents advertising the quality score 18.493 against deviation from true best solution and number of iterations 
needed. (A higher resolution / colour version of this figure is available in the electronic copy of the article). 
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completely. This is understandable because when analyzing 
the search space, we see that only 25 fields are equal to or 
better than 9.291, which is 2% of the entire search space. 
 Next, we evaluate parameters of the algorithm other than 
the number of visits per agent and iteration. We observe a 
large error if the number of visits is only two, as each agent 
only visits positions that have been shared with him. 
Therefore, new positions are only observed in the first 
iteration and only shared afterwards. With an increased 
number of visits, the accuracy increases but remains 
constant from then on, which slightly reduces the variance. 
As for the number of iterations (excluding the number of 
visits 2, which consents quite quickly without new 
positions), we notice a downward trend suggesting that an 
increase in the number of visits could accelerate the 
swarm’s consensus achievement (Fig. 7). 

 With prior knowledge of how the rogue agents affect the 
swarm, the parameters for achieving consensus, have been 
adjusted. In Fig. (8), we can clearly see that while the 
number of visits performed per agent and iteration increases, 
the deviation from the best solution decreases, which 
illustrates a power law relationship between the two 
variables. We also see that more rogue agents lead to more 
iterations needed to achieve consensus, while increasing the 
number of visits does not have a significant impact, 
however a slight upward trend can be inferred. 
 By reducing the quality score advertised by rogue 
agents, we observe a similar trend as before, albeit the 
impact becomes clearer in the iterations. Again, increasing 
the number of visits per agent and iteration seems to reduce 
the influence of the rogue agents in the consented solution, 
as illustrated in Fig. (9). With a better quality score, we can 
now clearly see that increasing the number of visits 
increases the iterations needed for consent. 
 The same tendency applies to the situation with a quality 
score that is very close to the true best solution, although we 
lose the power law quality, which becomes rather linear. 

Again, it is noticeable that with seven rogue agents, the 
swarm does not converge to a better solution unless the 
number of visits is increased to a number > 4, as illustrated 
in Fig. (10). There is an even clearer upward trend in 
iterations to convergence, which indicates an increase in 
iterations as the number of visits  increases. 
 Next, the influence of the number of neighbors is 
explored (Fig. 11), with a search space of 961. We see that 
our algorithm no longer improves its accuracy for a 
neighborhood larger than three, while a narrower 
neighborhood reduces its accuracy. However, as the the 
number of neighbors increases, a reduction in the iterations 
needed to reach consensus is highlighted. 

 In Fig. (12), we increase the agents' difficulty in finding 
the true best solution by increasing the size of the search 
space by a factor of approximately ��. Increasing the 
number of neighbors initially seems to increase the relative 
deviation from the true best solution, but then stagnates at 
the number of neighbors > 3. Although for the number of 
neighbors < = 3 the accuracy has a large variance and 
abruptly becomes very small when the number of neighbors 
becomes > 3. In terms of the speed at which concensus is 
reached, we again observe an increase in the speed of 
convergence with a power law relationship quality. 

 As the rate of convergence increased when different 
neighborhoods were plotted, it was hypothesized that 
different combinations of neighborhoods and the number of 
visits performed could be beneficial to the swarm's 
performance. In this particular case, we have to consider 
that the number of visits depends on the neighborhood size, 
as the advertised positions should be visited by each agent 
they were advertised to. Therefore, for the number of visits, 
we increase the size of the neighborhood by a specific 
amount so that the agents have advertised positions but also 
need to visit some new random positions, e.g. in Fig. (13), 
the blue curve illustrates the example of a neighborhood of 
size two and 2 + 1 visits. 

 
Fig. (6). Number of rogue agents advertising the score 9.291 against deviation from true best solution and number of iterations needed. (A 
higher resolution / colour version of this figure is available in the electronic copy of the article). 
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Fig. (7). Number of visits plotted against deviation from true best solution and number of iterations needed. (A higher resolution / colour 
version of this figure is available in the electronic copy of the article). 
 

 
Fig. (8). Number of visits with different number of rogue agents, advertising the quality score 33.114, plotted against deviation of true best 
solution and number of iterations needed. (A higher resolution / colour version of this figure is available in the electronic copy of the article). 

 

 
Fig. (9). Number of visits with different number of rogue agents, advertising the quality score 18.493, plotted against deviation of true best 
solution and number of iterations needed. (A higher resolution / colour version of this figure is available in the electronic copy of the article). 
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Fig. (10). Number of visits with different number of rogue agents, advertising the quality score 9.291, plotted against deviation of true best 
solution and number of iterations needed. (A higher resolution / colour version of this figure is available in the electronic copy of the article). 
 

 
Fig. (11). Number of neighbors with search space size of 961 plotted against deviation from true best solution and number of iterations needed. 
(A higher resolution / colour version of this figure is available in the electronic copy of the article). 
 

 
Fig. (12). Number of neighbors with search space size of 90601 plotted against deviation from true best solution and number of iterations 
needed. (A higher resolution / colour version of this figure is available in the electronic copy of the article). 
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 In Fig. (13) we observe a peak when using two and four 
as neighborhood size, with �� and �� visits respectively, 
but it disappears completely with a size of > 4. For scenarios 
with a higher number of visits such peaks do not occur at 
all. It is also notable that the accuracy remains constant until 
a given number of neighbors is reached, where it improves 
in all cases up to the best solution with the number of visits 
� �������� � �������. Increasing the number of visits 
shows an eventual convergence of the swarm towards the 
true best solution. In terms of convergence speed, we notice 
an improvement with an increasing number of visits, which 
is plausible as with more visits, each agent is able to explore 

a larger part of the search space. Note that faster 
convergence towards a solution does not mean a faster 
computational method as the visit of a position also takes 
time. In a real-world scenario, the effective time resulting 
from the considered parameter setting should be taken into 
account. 

 For further investigations, we increase the search space, 
first by a factor of approximately 11 (Fig. 14) and then �� 
(Fig. 15). We notice similar plots as in the previous one, 
with a slightly improved accuracy along with a higher 
number of neighbors and visits. There is a sudden decrease 

 
Fig. (13). Number of neighbors with different number of visits with search space 961 plotted against deviation of true best solution and 
number of iterations needed. (A higher resolution / colour version of this figure is available in the electronic copy of the article). 

 

 
Fig. (14). Number of neighbors with different number of visits with search space 10201 plotted against deviation of true best solution and 
number of iterations needed. (A higher resolution / colour version of this figure is available in the electronic copy of the article). 
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in the deviation from the best solution when the number is 
increased and when the number of visits is � �������� �

��������. In terms of iterations, in a search space of ���, we 
see the neighboring combinations [+1,+2,+3] stop 
decreasing when they are lost in a local minima for a search 
space of 961, however, for larger search spaces, they follow 
the trend and decrease to a total number of four iterations. 
 When increasing the threshold for the majority of the 
swarm to achieve consensus, we also observe an 
indifference of the algorithm to this parameter (Fig. 16). 
Although the accuracy seems to be better on a small < 0.3 
threshold and on greater > = 0.6 thresholds, the variance on 
all thresholds is quite high, reaching from the true best 
solution to a relative deviation of almost ���. As opposed 

to the deviation from the true best solution, we see that the 
number of iterations increases slightly as the threshold 
increases, as a larger part of the swarm needs to vote for the 
same solution. 
 Analyzing how the number of consensus affects the 
performance of the swarm, we can clearly see a trend in both 
subplots (Fig. 17). The performance increases significantly as 
the number of consensus rounds increases. The same is true 
for the number of iterations needed, where it is visually clear 
that while the performance improves, there is also an increase 
in the number of iterations needed to reach consensus, which 
is the definition of the plotted parameter. 

 Plotting the majority threshold against the number of 
rounds to consensus, we notice that when the majority 

 
Fig. (15). Number of neighbors with different number of visits with search space 90601 plotted against deviation of true best solution and 
number of iterations needed. (A higher resolution / colour version of this figure is available in the electronic copy of the article). 

 

 
Fig. (16). Threshold for majority plotted against deviation from true best solution and number of iterations needed. (A higher resolution / 
colour version of this figure is available in the electronic copy of the article). 
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threshold is increased, there is a downwards trend in each 
possible combinations (Fig. 18). We also notice that the 
larger the number of consensus rounds, the better the 
performance of the swarm. The number of consensus rounds 
[6, 7, 8] delivers similar performance, indicating that a 
higher number might not be useful. As for the number of 
iterations in the plot, we observe that each setup behaves 
similarly and increases the number of iterations regardless 
of the number of consensus. 
 When exploring the parameters of the algorithm the 
most compelling finding was its remarkable robustness 
against noise. In Fig. (19), it appears as if the algorithm does 
not succumb to noisy solutions, with a consistent median, 

with a slight trend upwards for noise > 10, albeit the speed 
seems to decrease at a faster pace. The numbers shown here 
are absolute values of the added noise to the quality score 
found by the agents. 

CONCLUSION 

 Implementing the model described in [4], we tuned the 
parameters to test its accuracy, speed and robustness. We 
establish a baseline for the democratic honeybee algorithm 
and determine the most adequate parameters to ensure the 
algorithm’s best performance. The algorithm is resistant to 
noise, and to a certain extent, to rogue agents. To improve 
performance, a memory has been implemented so that each 
agent remembers its previous best quality score and retains 

 
Fig. (17). Number of consensus plotted against deviation from true best solution and number of iterations needed. (A higher resolution / col-
our version of this figure is available in the electronic copy of the article). 

 

 
Fig. (18). Majority threshold with number of consensus plotted against deviation from true best solution and number of iterations needed. (A 
higher resolution / colour version of this figure is available in the electronic copy of the article). 
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it if no better one has been found in the current exploration 
phase. Using three visits for each agent with a neighborhood 
of two, we notice a certain tolerance towards rogue agents, 
which is most noticeable when the quality score advertised 
by the rogue agents is further away from the true best 
solution. Increasing, however, the number of allowed visits 
for each agent, the influence of rogue agents in the swarm is 
significantly reduced, but this leads to slower convergence. 
In the case of noise, we notice a slower convergence of the 
swarm to the global minima and a slightly reduced 
accuracy. 
 Nevertheless, the performance of the swarm is 
influenced by many parameters. As expected, the number of 
agents and the size of the search space have a positive and 
negative effect on the search, respectively. The number of 
visits proved to have a very low effect on the swarm, while 
the number of neighbors improved its efficiency, 
simultaneously reducing the required number of iterations. 
Moreover, in terms of the number of runs needed to reach 
consensus, positive results in terms of swarm accuracy were 
obtained as expected when more iterations were performed. 
We observe a similar trend, where the swarm appears to 
consent more frequently to the true best solution as the 
majority threshold increases. Lastly, regarding the number 
of visits and the size of the neighborhood, the swarm reacts 
very well, i.e. an increase of both parameters, leads to 
increased accuracy in finding the true best solution, even in 
large search spaces, already in a neighborhood of ten and 14 
visits with an overall trend downwards.  
 For further investigations, functions other than the 
Rastrigin function could be used to test the parameters of 
the algorithm. It also would be interesting to build a 
dynamic small world topology over the swarm, which 
would dynamically reduce the number of connecting edges 
[16]. This idea combined with a network with trust edges 
[17], where a swarm would reduce its trust in a rogue agent 

when it spams bad positions, could significantly improve the 
robustness of the swarm. This hypothesis is based on the 
observation that our algorithm will never be robust against a 
number of rogue agents which is larger than half of the total 
number of agents. With such an implementation, the 
robustness of the swarm would become invariant to the 
number of rogue agents. 
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