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� Abstract: Aims: The main purpose of this paper is to achieve good convergence and distribution in 
different Pareto fronts. 

Background: Research in recent decades has shown that evolutionary multi-objective optimization can 
effectively solve multi-objective optimization problems with no more than 3 targets. However, when 
solving MaOPs, the traditional evolutionary multi-objective optimization algorithm is difficult to effec-
tively balance convergence and diversity. In order to solve these problems, many algorithms have 
emerged, which can be roughly divided into the following three types: decomposition-based, index-
based, and dominance relationship-based. In addition, there are many algorithms that introduce the 
idea of clustering into the environment. However, there are some disadvantages to solving different 
types of MaOPs. In order to take advantage of the above algorithms, this paper proposes a many-
objective optimization algorithm based on two-phase evolutionary selection. 

Objective: In order to verify the comprehensive performance of the algorithm on the testing problem of 
different Pareto front, 18 examples of regular PF problems and irregular PF problems are used to test 
the performance of the algorithm proposed in this paper. 

Method: This paper proposes a two-phase evolutionary selection strategy. The evolution process is 
divided into two phases to select individuals with good quality. In the first phase, the convergence area 
is constructed by indicators to accelerate the convergence of the algorithm. In the second phase, the 
parallel distance is used to map the individuals to the hyperplane, and the individuals are clustered 
according to the distance on the hyperplane, and then the smallest fitness in each category is selected.  

Result: For regular Pareto front testing problems, MaOEA/TPS performed better than RVEA, PREA, 
CAMOEA and One by one EA in 19, 21, 30, 26 cases, respectively, while it was only outperformed by 
RVEA, PREA, CAMOEA and One by one EA in 8, 5, 1, and 6 cases. For the irregular front testing 
problem, MaOEA/TPS performed better than RVEA, PREA, CAMOEA and One by one EA in 20, 17, 
25, and 21 cases, respectively, while it was only outperformed by RVEA, PREA, CAMOEA and One 
by one EA in 6, 8, 1, and 6 cases.  

Conclusion: The paper proposes a many-objective evolutionary algorithm based on two phase selec-
tion, termed MaOEA/TPS, for solving MaOPs with different shapes of Pareto fronts. The results show 
that MaOEA/TPS has quite a competitive performance compared with the several algorithms on most 
test problems. 

Other: Although the algorithm in this paper has achieved good results, the optimization problem in the 
real environment is more difficult, therefore, applying the algorithm proposed in this paper to real 
problems will be the next research direction.�
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1. INTRODUCTION 

 A multi-objective optimization problem contains multi-
ple goals that are optimized at the same time. If the number 
of optimized goals exceeds 3, it is called Many-objective 
Optimization Problems (MaOPs) [1]. The objectives of this  
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type of optimization problem are contradictory, and the pur-
pose of optimization is to obtain a set of compromise solu-
tions among multiple objectives. There are many high-
dimensional multi-objective optimization problems in the 
real world, such as vehicle path planning problems [2], au-
tomobile crashworthiness design problems [3], active Power 
Filter [4], etc., which have high theoretical and application 
value. 
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 Research in recent decades has shown that evolutionary 
multi-objective optimization can effectively solve multi-
objective optimization problems with no more than 3 targets 
[5]. However, when solving MaOPs, the traditional evolu-
tionary multi-objective optimization algorithm is difficult to 
effectively balance convergence and diversity. The main 
difficulties are as follows [5, 6]: First, as the number of tar-
gets increases, the Pareto relationship fails, and it is difficult 
to distinguish between individuals; Second, the number of 
evolutionary individuals required to approach the Pareto 
front increases exponentially, which increases the space and 
time complexity of problem-solving; Third, the search be-
havior of the population is difficult to investigate, which 
increases the design difficulty of the change operator. To 
solve the above problems, the most direct method is to relax 
the dominance relationship and increase the selection pres-
sure for evolution to the real Pareto front, for example, 
MFEA [7] based on fuzzy dominance relationship, GrEA [8] 

based on hypergrid dominance and θ-DEA [9] based on 
reference vector dominance. However, additional parameter 
adjustment is required to dominate the area, and inappropri-
ate parameter adjustment will reduce the diversity of the 
algorithm [10]. 
 An algorithm based on the decomposition idea, which is 
different from the relaxation of the dominance relationship, 
decomposes the multi-objective problem into single sub-
objectives, generates a uniform weight vector in the space, 
and uses the aggregation function to select solutions to 
maintain the convergence and diversity of the population. 
The most basic decomposition algorithm is MOEA/D [11]. 
Many algorithms are improved on this framework. Recently, 
DDEA [12] is proposed, inspired by the classic sorting algo-
rithm quickselect [13], and the individual itself is used as 
the weight to construct a dynamic decomposition strategy 
that dynamically adjusts the weight vector to improve the 
performance of the algorithm, but excessive vector adjust-
ment makes the algorithm unable to balance the conver-
gence and diversity of the algorithm on the problem with 
regular Pareto front. MaOBSO [14] combines variable clas-
sification and decomposition strategies to solve Many-
Objective-based problems. 
 Index-based algorithms use performance index values to 
represent the quality of the solution in environment selec-
tion [15]. Because of its simple and versatile characteristics, 
it is also a representative method. For example, MOMBIII 
[16] based on the R2 indicator and MaOEA/IGD [17] based 
on the IGD indicator, select solutions by obtaining the cor-
responding indicator values, but a single indicator has a 
preference in the process of environmental selection, which 
affects the performance of the algorithm. EIEA [18] adopts 
the enhanced IGD-NS as the secondary selection criterion in 
environmental selection. In addition, there are also some 
algorithms that introduce the idea of clustering to select so-
lutions in the process of environmental selection. Hua Yi 
cun et al. proposed that CAMOEA [19] introduces hierar-
chical clustering selection in the critical layer of non-
dominated sorting to improve convergence and diversity. 
Then, Liu Song bai proposed that MaOEA/C [20] pre-
divided the population by dividing clusters with the coordi-
nate axis as the clustering center, and then further divided 
the population by using hierarchical clustering. The algo-

rithm better balances the convergence and diversity, but the 
solution set cannot achieve good distribution performance 
on the convex front. 
 These MaOEAs are proposed to solve MaOPs, however, 
there are some disadvantages to solving different types of 
MaOPs. In order to take advantage of the above algorithms, 
better convergence and distribution in different Pareto fronts 
are acheived. This paper proposes a many-objective optimi-
zation algorithm based on two-phase evolutionary selection. 
The main contributions of the algorithm are as follows: 

1) A two-phase selection algorithm is proposed. In the 
first phase, a binary scale index is used to screen out 
a certain difference solution to construct a conver-
gence area and promote the convergence of the popu-
lation. Especially in the second phase, a hierarchical 
clustering algorithm based on parallel distance simi-
larity is proposed to perform distributed operations 
on the constructed regions to maintain the diversity 
of population. 

2) Comparing the algorithm proposed in this paper with 
four representative many-objective optimization al-
gorithms, the results show that the algorithm can 
achieve better distribution and convergence when 
solving problems with regular and irregular Pareto 
front. 

 The rest of this paper is organized as follows: Section 2 
introduces some related concepts, such as the definition of 
MaOPs and the ratio based on the indicator. Section 3 pre-
sents the details of MaOEA/TPS. The experimental results 
and discussions are provided in Section 4. At last, our con-
clusions and future work are presented in Section 5. 

2. RELATED CONCEPT 

2.1. Concept and Definition of a Many-Objective  
Optimization Algorithm  

 Without loss of generality, the minimization problem is 
taken as an example, generally, a minimize multi-objective 
optimization problem having n decision variables and m 
objective variables can be mathematically described as [21]: 

minimize F(x) = ( f1(x), f2 (x)�, fm(x))T  

subject to x ∈Ω  

where  is n-dimensional decision 
vector, represents n-dimension decision space� repre-

sents an m-dimension objective dimension. consti-
tutes m conflicting objective functions and is mapping from 
n-dimensional decision space to m-dimensional objective 
space Y. When M is greater than 3, it is called a many-
objective optimization problem. 

2.2. Radio Based Indicator 

 Suppose the objective space is �u, v , the ra-
dio-based indicator value is defined as follows in 
Eq. (1):  

1 2( , , )T n
nx x x x R= ∈Ω⊆�

Ω Y
:f YΩ→

Ω

+
mR +

mR∈
(u / v)r

pI
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(1)

 
Where represents p-norm, literature [15] proved that it 
is the best indicator when the p is . At the same time, the 
fitness of xi can be calculated as follows by Eq. (2): 

         
(2)

 
 If the fitness value of an individual is greater than or 
equal to 0, it is the necessary and sufficient condition for the 
individual to be a nondominated solution in the current pop-
ulation. The larger the fitness value is, the more important xi 
is in the current population. 

3. METHODOLOGY 

3.1. The Proposed MaOEA/TPS 

 In this section, our proposed algorithm MaOEA/TPS is 
introduced thoroughly, which includes the following four 
subsections. Specifically, the general framework of 
MaOEA/TPS is provided in Section 3.1. Then, the main 
algorithmic components of MaOEA/TPS, i.e., the two-phase 
select strategy, are introduced in Section 3.2. 
3.1.1. The Framework of MaOEA/TPS 

 Algorithm 1 describes the main framework of the pro-
posed algorithm MaOEA/TPS. First, an initial population of 
size N is randomly generated, and excellent individuals are 
selected to enter the mating pool. Then, two classical evolu-
tionary operators (the simulated binary crossover (SBX)) 
and multi-style mutation (PM) are used to generate off-
spring Qt, merge offspring and parent individuals, and final-
ly select N convergence and diversity from the merged indi-
viduals through a two-phase evolutionary selection mecha-
nism; the above steps are repeated until the termination con-
ditions are met. The pseudo code of the overall framework 
is shown in Algorithm 1: 

Algorithm 1 General Framework of MaOEA-TPS 

Input: �(Popsize),�����(the max number of Evolutionary 
generation) 

Output: ������(Final population) 

1 Initialize the population���with N randomized individuals 

2 while termination criterion is not fulfilled do 

3 pool=MatingSlecting(Pt) 

4 Qt=Reproduction(pool) 

5 Pt=Qt+Pt 

6 Pt+1=EnvironmentalSelection(Pt) 

7 t=t+1 

8 end while 

10 Return Pt+1 

3.1.2. Two-phase Environmental Selection Strategy 

 This paper proposes a two-phase evolutionary selection 
strategy. The specific content is shown in Algorithm 2. The 
evolution process is divided into two phases to select indi-
viduals with good quality. In the first phase, the conver-
gence area is constructed by indicators to accelerate the 
convergence of the algorithm. In the second phase, the par-
allel distance is used to map the individuals to the hyper-
plane, and the individuals are clustered according to the 
distance on the hyperplane, and then the target and the 
smallest in each category are selected. Finally, the popula-
tion that takes into account both convergence and distribu-
tion is obtained. The specific operations of each phase are 
described in detail as follow: 

Algorithm 2 Environmental Selection 

Input: Pt (Merged population) 

Output: Pt+1(Next generation population) 

1 /* convergence area in first phase*/  

2 Pc=Convergence region(Pt) 

3 /* clustering selection based on parallel distance in the se-
cond phase */ 

4 (C1,C2,C3…..CN)=Paralleldistance_Clustering(Pc) 

5 Find one individual with the best convergence indicator value 
from each cluster, and the final individual is Pt+1 

 
3.1.2.1 Construction of the Convergence Area Based on 
Radio-Based Indicator 

 The steps of constructing the convergent region in the 
first phase are shown in Algorithm 3. The algorithm based 
on the dominance relationship cannot effectively distinguish 
individuals. Literature [22] pointed out that the boundary 
solution can promote the convergence and diversity of the 
population during the evolution process. But there is a dom-
inant resistance solution in the boundary area, which is very 
poor on at least one target but is better than other solutions 
[23]. In order to eliminate the differential solution to protect 
the boundary solution, the good properties of the indicators 
in the literature [15] are used to construct the first-phase 
convergence region. Algorithm 3 has an input Pt (merged 
individual) and an output Pc (convergence region individu-
al). In line 1, calculate the index value of the merged indi-
vidual Pt according to formula (1), and then calculate the 
fitness value of the individual according to formula (2) in 
line 2. In lines 3-5, when the number of individual index 
values greater than zero does not exceed N, then sort by the 
size of the fitness value, and select individuals with high 
importance directly into the next generation. Otherwise, 
construct the convergence area based on specific steps in 
lines 6-16. In lines 7-8, calculate the number of individuals 
with fitness values greater than zero and calculate the num-
ber of individuals to be deleted. In lines 9-13, according to 
the size of the fitness value, screen out the prescribed num-
ber of individuals, lines 14-15, calculate the maximum fmax 
of each dimension of the remaining individuals, select indi-
viduals less than the maximum range for the next phase of 
optimization, i.e., the area composed of (0,0,0...0) and 

1

1

|| (u, v) ||
(u / v)

|| (v,u) || otherwise

(u / v) (max(0, 1), max(0, 1))

p q qr
p

p

m
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R if v u
I

R

vvR
u u
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. The schematic diagram of the conver-
gence area is shown in Fig. (1). 

 
Fig. (1). Schematic diagram of convergent region construction. 

 
 As shown in the figure, suppose the size of the popula-
tion is 5. After crossover mutation, the size of the combined 
population is 10. Among them, seven individuals with fit-
ness greater than zero are a�b�c�d�e�f�g, and they 
are all non-dominated solutions. The number of individuals 
to be deleted is two. a and g are boundary outlier solutions, 
and their fitness is the smallest in the evolution of the popu-
lation, and they will be deleted one by one. Next, the maxi-
mum value of each dimension is calculated of the remaining 
individual b�c�d�e�f, that is, the area in the dashed 
box is the convergence area. 
3.1.2.2. Clustering Distribution Selection Based on Paral-
lel Distance 

 The second-phase distribution operation is shown in 
Algorithm 4. Generally speaking, a suitable individual simi-
larity measure is very important for clustering. In MaOEA/C 
[20], the vector angle between individuals was used to 
measure the similarity, however, it was found that this 
measurement method is very poor for irregular frontier 
problems. In order to make the algorithm achieve good dis-
tribution on the problem with regular and irregular Pareto 
front, a clustering distribution selection based on parallel 
distance similarity is proposed. 
 Algorithm 4 has an input Pc (the individuals selected in 
the first phase) and an output C (the collection of population 
divided after parallel distance clustering). In lines 1-2, paral-
lel distance is used to map the individual Pc after the first 
phase selection to the hyperplane. Parallel mapping is used 
to calculate similarity. The distance measurement method 
can appropriately measure the distance between individuals 
on different Pareto front shapes. The schematic diagram of 
parallel distance similarity cluster selection is shown in Fig. 
(2), and the specific operations are as follows: 

Algorithm 3 Convergence region (Pt) 

Input: Pt 

Output: Pc 

1 Calculate the indicator of Z by Eq (1) and preserve in indica-
tor matrix I 

2 Determine its individuals’ fitness values by using Eq. (2) 

3 if the number of individuals with is less than 
N, then 

4 Select the top N individuals with the greatest values of 

from Z 

5 Output corresponding indicator matrix I 

6 else 

7 Select the solutions with in Z; Suppose the 

number of I is  

8 Let n= -N 

9 for i=1:n 

10 Let  

11 Remove xk from Pt ,Pc=Pt\{xk} 

12 Update the indicator matrix I 

13 end 

14 Calculate the fmax for each dimension in Pc 

15 Update the Pc with the inner space of rectangular area 
building by zero and fmax 

16 end 

 
 First, the individual Pc is normalized, and the individual 
targets of individual xi are calculated as follows in Eq. (3): 

fq
i

−

=
fq

i − fq
min

fq
max − fq

min , q =1,�,m            (3) 

 Next, the individuals selected in the first phase are 
mapped to the hyperplane of , and the distance 
calculation formula for any two mapped individuals is as 
follows in Eq. (4): 

di , j ={ ( fq
i

−

− fq
j

−

)2 − [ ( fq
i

−

− fq
j

−

)
q=1

m

∑ ]2

q=1

m

∑ / m}0.5
         (4) 

 In the third row, clustering is performed based on the 
distance calculated by the parallel mapping, and each indi-
vidual is regarded as a class; K is the number of individuals 
selected in the first phase. In lines 4-7: cluster the individu-
als, select the two closest clusters to merge and return to the 
final cluster when the set conditions are met, otherwise con-

max max max
1 2( , , )mf f f�
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tinue to loop. The distance formula between clusters is as 
follows in Eq. (5): 

            
(5)

 

 
Fig. (2). Parallel distance similarity clustering diagram. 

 

Algorithm 4 Paralleldistance_Clustering(S) 

Input: Pc (Individuals after the first phase selection) 

Output: C(C1,C2,C3…..CN) 

1 Parallel mapping individuals of Pc to hyperplanes 

2 Calculate the Parallel distance of mapping individuals by Eq. 
(4) 

3 Initialize each individual as a cluster Ci , suppose the 
number of Pc is K 

4 While |C|>N-K 

5 For each pair of clusters, the distance between two clusters, d1,2 
is calculated by (5) 

6 The pair of clusters having the smallest distance is merged 

7 end While 

8 return (C1, C2, C3 …. CN) 

 

4. RESULTS AND ANALYSIS 

 This section aims to verify the performance of the 
MaOEA/TPS algorithm through experimental research. The 
proposed algorithm was compared with RVEA [24], PREA 
[15], CAMOEA [19], One by one EA [22] on the problem 
with regular and irregular Pareto front. All experiments in 
this article are carried out on a computer with Intel Core, 
CPU: i5-10400@2.90 GHz, RAM: 16.0 GB. The program is 
written in Matlab 2016, and runs on the multi-objective op-

timization algorithm open-source platform PlatEMO-2.7 
[25]. 

4.1. Test Problem and performance Metrics 

 A total of 18 instances are used to test the performance 
of the algorithm proposed in this article. They are DTLZ1-2 
[26], WFG1-9 [27], and MaF1, 3, 4, 6, 7 [28]. These in-
stances include not only the problems with regular PF 
(DTLZ1-2, WFG4-9) but also the problems with irregular 
PF (WFG1-3, MaF1,  MaF3,  MaF4,  MaF6,  MaF7). For 
DTLZ1�the number of decision variables is m-1+5. For 
DTLZ2, WFG1-2, WFG4-9�the number of decision varia-
bles is m-1+10. For WFG3, MaF1, MaF3,  MaF4, MaF6, 
MaF7, the number of decision variables is m-1-10. 
 In order to evaluate the comprehensive performance of 
the proposed algorithm, this paper uses two widely used 
indicators IGD and Spread, accurately and quantitatively. 
The inverse generation distance is used to comprehensively 
evaluate the convergence and diversity of the algorithm, and 
Spread is used to evaluate the distribution of the approxi-
mate Pareto front. 
(1) IGD [29]: Let P be an approximation set and be a 

set of non-dominated points uniformly distributed 
along the true Pareto front, and then the IGD metric 
is defined as follows: 

  
Where |P* | is the cardinality of P∗ ; d(z∗, P)  is the Euclide-
an distance between z∗ ∈P∗  and its nearest neighbor in P . 
The smaller the value of IGD, the better convergence and 
distribution of the approximate solution set and closer to the 
true Pareto front. 

(2) Spread [30, 31]: In order to measure the distribution 
of the solution, we use the universal indicator 
Spread. The calculation formula of the indicator is as 
follows in Eq. (6): 

 

 

 

Where |P* |  is the cardinality of P*,� P* ��� ���� ���� Pareto 
optimal solutions, e1, e2, em are m extreme solution in . 

4.2. Parameter Setting 

(1) Population Size: The population sizes are set to be 
91, 210, 240, 275, corresponding to m = 3, 5, 8, 10. 

(2) Operator: We use a simulated binary crossover (SBX) 
and polynomial mutation as genetic operators. The 
crossover probability pc is set to 1.0, and its distribu-
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tion index is set to 20. The mutation probability is 
set to , and n is set to 20. 

(3) Comparison algorithm parameter setting: The penalty 
factor change rate of RVEA is 2, and the reference 
point adjustment frequency is 0.1. 

(4) Number of Runs and termination conditions: All the 
algorithms in this paper are run on the open-source 
platform PlatEMO [25]; each algorithm is run inde-
pendently 20 times, and the standard deviation and 
average are recorded. When the evaluation times of 
the objective function reach 30,000 times, the algo-
rithm ends. 

(5) Statistical Test: To reach a statistically sound conclu-
sion, the Wilcoxon rank-sum test at the significance 
level of 0.05 is used to analyze the differences be-
tween MaOEA/TPS and the other four algorithms. 
Symbols “+,” “=”, and “-” indicate the results ob-
tained by other algorithms are better than, similarly 
to, and worse than that of MaOEA/TPS. 

4.3. Comparisons on Problems with Regular Pareto 
Fronts 

 In this section, MaOEA/TPS is compared with four rep-
resentative MaOEAs on problems with regular Pareto 
fronts. The statistical test results for IGD values and Spread 
values obtained by the five compared algorithms are sum-
marized in Tables 1 and 2. In addition, MaOEA/TPS have 
achieved the most global optimal results on IGD and 
Spread. Compared with other algorithms, the specific analy-
sis is as follows: 

 Regarding DTLZ1 with line and muti-model PF, 
MaOEA/TPS performed best in the cases of 5 objectives, 
while RVEA was best in the case of 3 objectives and one by 
one EA obtained the best results in the cases of 8 and 10 
objectives. For DTLZ1 and WFG4 with concave PF, 
MaOEA/TPS only gave a median performance among the 
compared MaOEAs. Concerning WFG5 with Deceptive PF 
and WFG6 with muti-modal PF, MaOEA/TPS performed 
best in the cases of 5, 8, and 10 objectives. In particular, 
(Fig. 3) shows the IGD convergence curve of the compari-
son algorithm on WFG5, MaOEA/TPS can quickly stabilize 
to the minimum, showing the convergence performance of 
the proposed algorithm on WFG5. In the process of evolu-
tion, CAMOEA, PREA, RVEA has similar convergence 
performance in some cases, and the overall convergence of 
one by one EA fluctuates greatly. For WFG7 and WFG8 
with Uni-modal PF, MaOEA/TPS performed best in the 
cases of 8, and 10 objectives. Concerning WFG9 with a 
multi-modal and deceptive PF, MaOEA/TPS performed best 
in the cases of 5, 8, and 10 objectives; RVEA performed 
best in the cases of 3 objectives. Fig. (4) shows the conver-
gence curve of the algorithm on WFG9; it shows the per-
formance of the compared algorithms on WFG9. In the case 
of a small number of targets, CAMOEA, RVEA shows 
similar performance, but as the number of targets increases, 
MaOEA/TPS can quickly converge to the best performance 

index value. In order to intuitively reflect the distribution 
performance of MaOEA/TPS, (Figs. 5 and 6) presents the 
nondominated solutions obtained by the compared algo-
rithms on 5-objective WFG6 and 8-objective WFG8. 
Among these algorithms, MaOEA/TPS has the best solution 
set distribution, and one by one EA has the worst solution 
set distribution. 

 From the one-by-one comparisons in the last row of Ta-
ble 1, MaOEA/TPS performed better than RVEA, PREA, 
CAMOEA and One by one EA in 19, 21, 30, and 26 cases, 
respectively, while it was only outperformed by RVEA, 
PREA, CAMOEA and One by one EA in 8, 5, 1, and 6 cas-
es, respectively. Therefore, it is reasonable to conclude that 
MaOEA/TPS showed superior performance over its four 
competitors in most instances of the regular Pareto front. 

4.4. Comparisons on Problems with Irregular Pareto 
Fronts 

 In this section, MaOEA/TPS is compared with four rep-
resentative MaOEAs on problems with irregular Pareto 
fronts. The statistical test results for IGD values and Spread 
values obtained by the five compared algorithms are sum-
marized in Tables 3 and 4. In addition, MaOEA/TPS has 
also achieved the most global optimal results on IGD and 
Spread. Compared with other algorithms, the specific analy-
sis is as follows: 

 Regarding WFG1 with a convex, mixed, and biased PF, 
MaOEA/TPS performed best in the cases of 3 objectives, 
while PREA performed best in the cases of 5, 8, and 10 ob-
jectives. MaF1 with line and inverted PF, MaOEA/TPS per-
formed best in the cases of 3, 8, 10 objectives. Similarly, 
(Fig. 7) presents the IGD trajectories of the five compared 
algorithms on MaF1; MaOEA/TPS shows a good perfor-
mance on MaF1. Concerning WFG3 with linear and uni-
modal PF, MaOEA/TPS performed best in the cases of 5, 8, 
and 10 objectives, while PREA performed best in the cases 
of 3 objectives. Fig. (8) presents the IGD trajectories of the 
five compared algorithms on WFG3, and Fig. (9) presents 
the nondominated solutions obtained by compared algo-
rithms on 5-objective WFG3; they show good performance 
of MaOEA/TPS in solving WFG3. For WFG2 with a dis-
connected and mixed PF, MaOEA/TPS performed best in 
the cases of 3, and 8 objectives, while RVEA performed 
best in the cases of 5, and 10 objectives. Fig. (10) presents 
the five compared algorithms on 8-objective WFG2; it 
shows that MaOEA/TPS can balance convergence and di-
versity well. Regarding MaF3, it is characterized by a con-
vex PF and a large number of local PFs; only RVEA can 
solve this problem well. For MaF6 with degenerate PF, 
MaOEA/TPS performed best in the cases of 8, 10 objec-
tives. For MaF7 with disconnected PF, MaOEA/TPS per-
formed best in the case of 5 objectives  
 From the comparisons in the last row of Table 3 
MaOEA/TPS performed better than RVEA, PREA, 
CAMOEA and One by one EA in 20, 17, 25, 21 cases, re-
spectively, while it was only outperformed by RVEA , PREA 
, CAMOEA and One by one EA in 6, 8, 1, 6 cases. Therefore, 
it is reasonable to conclude that MaOEA/TPS showed 

cη
1 /mp n=
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Table 1. The statistical results (mean and standard deviation) of the IGD values obtained by RVEA, PREA, CAMOEA, One by 
one EA and MaOEA/TPS on regular Pareto front with 3, 5, 8 and 10 objectives. 

Problem M D RVEA PREA CAMOEA One by one EA MaOEA/TPS 

DTLZ1 

3 7 2.0742e-2 (1.59e-4) + 2.3329e-2 (4.60e-4) - 2.2787e-2 (5.24e-4) - 4.7955e-2 (1.44e-2) - 2.2173e-2 (3.73e-4) 

5 9 1.1761e-1 (6.47e-2) - 9.2150e-2 (7.08e-2) - 8.3818e-2 (3.33e-2) - 6.8206e-2 (3.69e-3) - 5.7988e-2 (5.66e-3) 

8 12 1.5105e-1 (7.65e-2) + 4.8374e-1 (2.51e-1) + 1.9419e+1 (5.89e+0) - 1.0365e-1 (4.55e-3) + 6.3262e+0 (4.09e+0) 

10 14 2.2252e-1 (2.27e-1) + 9.8259e-1 (6.83e-1) + 3.1184e+1 (1.25e+1) - 1.1286e-1 (1.31e-2) + 5.4910e+0 (2.60e+0) 

DTLZ2 

3 12 5.4498e-2 (1.07e-4) + 6.0484e-2 (8.42e-4) + 5.9850e-2 (1.17e-3) + 5.7085e-2 (8.72e-4) + 6.1222e-2 (1.00e-3) 

5 14 1.6549e-1 (1.15e-4) + 1.7265e-1 (1.31e-3) - 1.7781e-1 (2.98e-3) - 1.6296e-1 (8.72e-4) + 1.7107e-1 (1.15e-3) 

8 17 3.0563e-1 (7.81e-4) + 3.3482e-1 (1.68e-3) - 1.1744e+0 (1.22e-1) - 3.2100e-1 (1.68e-3) + 3.3097e-1 (1.24e-3) 

10 19 4.2562e-1 (2.30e-3) - 4.1923e-1 (2.81e-3) = 1.2304e+0 (1.07e-1) - 3.9490e-1 (2.25e-3) + 4.2253e-1 (1.13e-2) 

WFG4 

3 12 2.4209e-1 (4.63e-3) = 2.3877e-1 (4.05e-3) = 2.4836e-1 (4.47e-3) - 3.8133e-1 (3.67e-2) - 2.3966e-1 (4.99e-3) 

5 14 9.6063e-1 (1.95e-3) - 9.7315e-1 (8.09e-3) - 9.6812e-1 (7.83e-3) - 1.4461e+0 (8.30e-2) - 9.5576e-1 (6.58e-3) 

8 17 2.8663e+0 (1.81e-2) - 2.6890e+0 (2.10e-2) - 2.7608e+0 (2.30e-2) - 4.0049e+0 (1.95e-1) - 2.6583e+0 (2.40e-2) 

10 19 4.4584e+0 (5.51e-2) - 4.0206e+0 (3.14e-2) = 4.1067e+0 (3.07e-2) - 5.8883e+0 (1.31e-1) - 4.0365e+0 (2.55e-2) 

WFG5 

3 12 2.3661e-1 (2.30e-3) + 2.4653e-1 (2.76e-3) = 2.5122e-1 (4.36e-3) - 3.7182e-1 (4.82e-2) - 2.4696e-1 (4.33e-3) 

5 14 9.5117e-1 (1.61e-3) - 9.6448e-1 (7.66e-3) - 9.6683e-1 (7.74e-3) - 1.3993e+0 (8.67e-2) - 9.4440e-1 (7.75e-3) 

8 17 2.9063e+0 (3.10e-2) - 2.7596e+0 (2.92e-2) - 2.8867e+0 (4.47e-2) - 4.1798e+0 (1.40e-1) - 2.6403e+0 (2.68e-2) 

10 19 4.5187e+0 (6.66e-2) - 4.0624e+0 (3.14e-2) - 4.1614e+0 (5.30e-2) - 6.0814e+0 (1.92e-1) - 4.0157e+0 (1.89e-2) 

WFG6 

3 12 2.6525e-1 (1.37e-2) = 2.5478e-1 (7.91e-3) + 2.7894e-1 (1.63e-2) - 5.4192e-1 (6.07e-2) - 2.6183e-1 (9.32e-3) 

5 14 9.7147e-1 (6.15e-3) - 9.8767e-1 (8.21e-3) - 1.0147e+0 (1.36e-2) - 1.8684e+0 (1.24e-1) - 9.6389e-1 (7.86e-3) 

8 17 2.9691e+0 (4.36e-2) - 2.8529e+0 (2.53e-2) - 2.9022e+0 (4.59e-2) - 4.7598e+0 (2.14e-1) - 2.6605e+0 (2.16e-2) 

10 19 4.6461e+0 (8.53e-2) - 4.2078e+0 (5.39e-2) - 4.2110e+0 (6.89e-2) - 6.8415e+0 (2.05e-1) - 4.0714e+0 (2.52e-2) 

WFG7 

3 12 2.3784e-1 (4.10e-3) = 2.3984e-1 (4.85e-3) = 2.4862e-1 (8.01e-3) - 4.9168e-1 (1.10e-1) - 2.3863e-1 (4.75e-3) 

5 14 9.6507e-1 (3.03e-3) = 9.8031e-1 (9.19e-3) - 9.7205e-1 (7.56e-3) = 1.8765e+0 (1.70e-1) - 9.6717e-1 (1.14e-2) 

8 17 2.9114e+0 (4.07e-2) - 2.7747e+0 (2.92e-2) - 2.8965e+0 (5.50e-2) - 4.3452e+0 (1.59e-1) - 2.6604e+0 (1.83e-2) 

10 19 4.2591e+0 (5.67e-2) - 4.0912e+0 (3.25e-2) - 4.1715e+0 (4.66e-2) - 5.9799e+0 (2.33e-1) - 4.0529e+0 (3.72e-2) 

WFG8 

3 12 3.1773e-1 (6.35e-3) - 2.9490e-1 (4.98e-3) + 3.3353e-1 (5.32e-3) - 5.7945e-1 (5.32e-2) - 3.0711e-1 (5.20e-3) 

5 14 1.0162e+0 (3.74e-3) + 1.0284e+0 (6.36e-3) = 1.1457e+0 (1.54e-2) - 1.6236e+0 (1.21e-1) - 1.0253e+0 (8.32e-3) 

8 17 3.0609e+0 (2.31e-2) - 2.9883e+0 (3.26e-2) - 3.3804e+0 (2.78e-2) - 4.5489e+0 (2.05e-1) - 2.7390e+0 (1.69e-2) 

10 19 4.3744e+0 (5.68e-2) - 4.2852e+0 (4.17e-2) - 4.6432e+0 (2.86e-2) - 6.5967e+0 (4.42e-1) - 4.1406e+0 (3.79e-2) 

WFG9 

3 12 2.3076e-1 (4.70e-3) = 2.3592e-1 (3.47e-3) - 2.4219e-1 (6.09e-3) - 3.8052e-1 (4.25e-2) - 2.3316e-1 (3.82e-3) 

5 14 9.4468e-1 (4.29e-3) - 9.4441e-1 (9.34e-3) - 9.9772e-1 (1.30e-2) - 1.4054e+0 (1.26e-1) - 9.2792e-1 (8.67e-3) 

8 17 2.8516e+0 (2.27e-2) - 2.7330e+0 (1.66e-2) - 3.2106e+0 (8.88e-2) - 3.8136e+0 (1.89e-1) - 2.6584e+0 (2.22e-2) 

10 19 4.3083e+0 (8.52e-2) - 4.0003e+0 (3.25e-2) - 4.5758e+0 (8.47e-2) - 5.3983e+0 (2.31e-1) - 3.9099e+0 (3.58e-2) 

Best/all 8/32 4/32 0/32 4/32 16/32 

+/-/= 8/19/5 5/21/6 1/30/1 6/26/0 - 

Note: ‘+’,’-’and’=’indicate that the result is significantly better, significantly worse and statistically similar to that obtained by MaOEA/TPS, respectively. 
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Table 2. The statistical results (mean and standard deviation) of the Spread values obtained by RVEA, PREA, CAMOEA, One by 
one EA and MaOEA/TPS on regular Pareto front with 3, 5, 8 and 10 objectives. 

Problem M D RVEA PREA CAMOEA One by one EA MaOEA/TPS 

DTLZ1 

3 7 1.6179e-2 (4.78e-3) + 1.6518e-1 (1.79e-2) + 2.2648e-1 (3.29e-2) + 1.9644e+0 (5.47e-2) - 1.2115e+0 (7.38e-1) 

5 9 6.4098e-1 (3.79e-1) + 1.6646e-1 (1.06e-1) + 2.0328e-1 (5.15e-2) + 1.9070e+0 (3.66e-2) - 1.3957e+0 (4.30e-1) 

8 12 6.3944e-1 (3.06e-1) - 3.2094e-1 (1.66e-1) - 3.7563e-1 (4.18e-2) - 1.4243e+0 (3.82e-1) - 1.9110e-1 (1.72e-2) 

10 14 5.6770e-1 (3.63e-1) - 6.7697e-1 (2.47e-1) - 3.4007e-1 (3.06e-2) - 1.0534e+0 (6.33e-1) - 1.5962e-1 (1.12e-2) 

DTLZ2 

3 12 1.7041e-1 (4.10e-4) - 1.5297e-1 (1.48e-2) + 2.2959e-1 (2.46e-2) - 1.4371e-1 (2.89e-2) + 1.6427e-1 (1.72e-2) 

5 14 1.4901e-1 (1.22e-3) - 9.9577e-2 (4.53e-3) = 1.7485e-1 (1.48e-2) - 8.4573e-2 (1.55e-2) + 9.9121e-2 (5.23e-3) 

8 17 7.5384e-2 (4.66e-3) - 7.8922e-2 (4.38e-3) - 2.2418e-1 (1.24e-2) - 6.2386e-2 (2.36e-2) + 6.7164e-2 (5.67e-3) 

10 19 1.7084e-1 (6.05e-3) - 7.4322e-2 (4.84e-3) = 2.3231e-1 (1.09e-2) - 5.8964e-2 (1.65e-2) + 7.7217e-2 (1.42e-2) 

WFG4 

3 12 2.7112e-1 (1.69e-2) - 2.3821e-1 (1.74e-2) - 3.1651e-1 (2.58e-2) - 3.1483e-1 (2.18e-2) - 1.7081e-1 (1.61e-2) 

5 14 2.6022e-1 (7.82e-3) - 2.0307e-1 (1.55e-2) - 2.3596e-1 (1.79e-2) - 3.0632e-1 (1.38e-2) - 1.2147e-1 (8.59e-3) 

8 17 2.5370e-1 (1.50e-2) - 2.0138e-1 (1.13e-2) - 2.2297e-1 (1.94e-2) - 3.2776e-1 (2.26e-2) - 1.0613e-1 (7.39e-3) 

10 19 3.0699e-1 (1.92e-2) - 2.0065e-1 (1.27e-2) - 2.0911e-1 (1.38e-2) - 3.2200e-1 (1.21e-2) - 1.0042e-1 (5.47e-3) 

WFG5 

3 12 2.9091e-1 (1.21e-2) - 2.3717e-1 (1.66e-2) - 3.0613e-1 (2.95e-2) - 3.2898e-1 (2.46e-2) - 1.6700e-1 (1.41e-2) 

5 14 2.6070e-1 (7.35e-3) - 2.0962e-1 (1.44e-2) - 2.4377e-1 (1.87e-2) - 3.1761e-1 (1.37e-2) - 1.1316e-1 (7.69e-3) 

8 17 2.6586e-1 (1.70e-2) - 2.3363e-1 (1.70e-2) - 2.4716e-1 (1.98e-2) - 3.2707e-1 (1.81e-2) - 9.7524e-2 (6.22e-3) 

10 19 3.6172e-1 (2.00e-2) - 2.5197e-1 (1.65e-2) - 2.4652e-1 (1.11e-2) - 3.1744e-1 (1.39e-2) - 9.4167e-2 (3.97e-3) 

WFG6 

3 12 2.7587e-1 (1.85e-2) - 2.3601e-1 (2.03e-2) - 3.0923e-1 (3.04e-2) - 3.3151e-1 (1.88e-2) - 1.8214e-1 (2.20e-2) 

5 14 2.5784e-1 (8.78e-3) - 2.2267e-1 (1.72e-2) - 2.4341e-1 (1.65e-2) - 2.9157e-1 (9.03e-3) - 1.0597e-1 (7.02e-3) 

8 17 2.6694e-1 (1.87e-2) - 2.5396e-1 (1.64e-2) - 2.4608e-1 (1.75e-2) - 2.9536e-1 (1.21e-2) - 8.9348e-2 (8.79e-3) 

10 19 3.3478e-1 (2.24e-2) - 2.6152e-1 (1.74e-2) - 2.4590e-1 (1.57e-2) - 2.9095e-1 (1.28e-2) - 8.9369e-2 (7.46e-3) 

WFG7 

3 12 2.7896e-1 (1.54e-2) - 2.4189e-1 (2.30e-2) - 3.0490e-1 (3.70e-2) - 3.3268e-1 (2.92e-2) - 1.7438e-1 (1.97e-2) 

5 14 2.5154e-1 (8.35e-3) - 2.1186e-1 (1.86e-2) - 2.4083e-1 (1.50e-2) - 2.9381e-1 (1.58e-2) - 1.1320e-1 (7.46e-3) 

8 17 2.6096e-1 (2.11e-2) - 2.3473e-1 (1.12e-2) - 2.3196e-1 (2.13e-2) - 3.0152e-1 (1.51e-2) - 9.9773e-2 (6.33e-3) 

10 19 3.3377e-1 (1.67e-2) - 2.3407e-1 (1.65e-2) - 2.3125e-1 (1.96e-2) - 2.9728e-1 (1.52e-2) - 9.0472e-2 (5.86e-3) 

WFG8 

3 12 2.2623e-1 (1.82e-2) - 2.3447e-1 (1.71e-2) - 2.7543e-1 (2.57e-2) - 3.0233e-1 (2.25e-2) - 1.7485e-1 (1.44e-2) 

5 14 2.4949e-1 (8.47e-3) - 1.9319e-1 (1.19e-2) - 2.2360e-1 (1.91e-2) - 2.4064e-1 (9.92e-3) - 1.0661e-1 (8.36e-3) 

8 17 2.5060e-1 (1.80e-2) - 2.2346e-1 (1.40e-2) - 2.4130e-1 (1.94e-2) - 2.5992e-1 (1.77e-2) - 8.1358e-2 (4.60e-3) 

10 19 3.8533e-1 (3.90e-2) - 2.4104e-1 (1.56e-2) - 2.3882e-1 (1.58e-2) - 2.4092e-1 (1.40e-2) - 7.8903e-2 (5.93e-3) 

WFG9 

3 12 2.8822e-1 (1.96e-2) - 2.3425e-1 (2.33e-2) - 3.0624e-1 (2.55e-2) - 3.2937e-1 (2.15e-2) - 1.9127e-1 (1.98e-2) 

5 14 2.8833e-1 (9.67e-3) - 1.9605e-1 (1.27e-2) - 2.3478e-1 (1.28e-2) - 3.2245e-1 (1.78e-2) - 1.2852e-1 (8.58e-3) 

8 17 2.6034e-1 (1.71e-2) - 2.0372e-1 (1.29e-2) - 2.2635e-1 (1.01e-2) - 3.3999e-1 (2.14e-2) - 1.0311e-1 (5.34e-3) 

10 19 3.6460e-1 (2.53e-2) - 2.0789e-1 (1.55e-2) - 2.2141e-1 (1.13e-2) - 3.3300e-1 (1.97e-2) - 9.9670e-2 (5.44e-3) 

Best/all 1/32 1/32 0/32 4/32 26/32 

+/-/= 2/30/0 3/27/2 2/30/0 4/28/0 - 

Note: ‘+,’ ’-’ and ’=’ indicate that the result is significantly better, significantly worse, and statistically similar to that obtained by MaOEA/TPS, respectively. 
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(a) M=3        (b) M=5 

    
(c) M=8        (d) M=10 

Fig. (3). The IGD trajectories of the five algorithms on WFG5. 
 

    
(a) M=3       (b) M=5 

     
(c) M=8       (d) M=10 

Fig. (4). The IGD trajectories of the five algorithms on WFG9. 
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(a) RVEA     (b) PREA    (c) CAMOEA 

   
(d) One by one EA     (e) MaOEA/TPS 

Fig. (5). The objective values of nondominated solutions on 5-objective WFG6. 

 

 
(a) RVEA     (b) PREA    (c) CAMOEA 

   
(d) One by one EA     (e) MaOEA/TPS 

Fig. (6). The objective values of nondominated solutions on 8-objective WFG8. 
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(a) M=3       (b) M=5 

  
(c) M=8        (d) M=10 

Fig. (7). The IGD trajectories of the five algorithms on MaF1. 

 

      
(a) M=3      (b) M=5 

 
Fig. (8) Contd…. 
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(c) M=8      (d) M=10 

Fig. (8). The IGD trajectories of the five algorithms on WFG3. 
 

    
(a) RVEA        (b) PREA 

    
(c) CAMOEA      (d) One by one EA 

 
 (e) MaOEA/TPS 

Fig (9). The objective values of nondominated solutions on 5-objective WFG3. 
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(a) RVEA      (b) PREA 

 

  
 

(c) CAMOEA      (d) One by one EA 

 

 
(e) MaOEA/TPS 

Fig. (10). The objective values of nondominated solutions on 8-objective WFG2. 
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Table 3. The statistical results (mean and standard deviation) of the IGD values obtained by RVEA, PREA, CAMOEA, One by 
one EA and MaOEA/TPS on irregular Pareto front with 3, 5, 8 and 10 objectives. 

Problem M D RVEA PREA CAMOEA One by one EA MaOEA/TPS 

WFG1 

3 12 5.1495e-1 (6.94e-2) - 2.7085e-1 (2.30e-2) = 4.0345e-1 (4.91e-2) - 6.1613e-1 (8.67e-2) - 2.6699e-1 (3.08e-2) 

5 14 1.1968e+0 (9.95e-2) - 9.8938e-1 (6.20e-2) + 1.5952e+0 (1.13e-1) - 1.3495e+0 (8.97e-2) - 1.0954e+0 (9.82e-2) 

8 17 1.9805e+0 (1.21e-1) = 1.6916e+0 (9.40e-2) + 2.4354e+0 (6.91e-2) - 2.1993e+0 (1.45e-1) - 1.9576e+0 (1.22e-1) 

10 19 2.1524e+0 (1.89e-1) + 2.1072e+0 (8.55e-2) + 2.8602e+0 (8.41e-2) - 2.7038e+0 (1.23e-1) - 2.5527e+0 (1.39e-1) 

WFG2 

3 12 1.8966e-1 (6.08e-3) - 1.8454e-1 (6.28e-3) - 1.9204e-1 (7.52e-3) - 2.5495e-1 (1.63e-2) - 1.7431e-1 (6.09e-3) 

5 14 3.9741e-1 (1.06e-2) + 4.6202e-1 (1.13e-2) - 4.9938e-1 (1.18e-2) - 6.6102e-1 (6.58e-2) - 4.3155e-1 (1.21e-2) 

8 17 1.0197e+0 (5.17e-2) = 1.0473e+0 (2.70e-2) - 1.1175e+0 (3.07e-2) - 1.6170e+0 (8.35e-2) - 9.9454e-1 (2.75e-2) 

10 19 1.1337e+0 (6.26e-2) + 1.3702e+0 (4.81e-2) - 1.3949e+0 (4.53e-2) - 1.6539e+0 (6.97e-2) - 1.2212e+0 (4.26e-2) 

WFG3 

3 12 2.3553e-1 (1.74e-2) - 8.5441e-2 (7.38e-3) = 1.6193e-1 (1.21e-2) - 4.6998e-1 (6.04e-2) - 8.7803e-2 (8.52e-3) 

5 14 5.3741e-1 (7.65e-2) - 4.3333e-1 (5.99e-2) - 7.4480e-1 (8.28e-2) - 1.4060e+0 (2.24e-1) - 3.9250e-1 (7.41e-2) 

8 17 1.9266e+0 (3.53e-1) - 1.1333e+0 (1.50e-1) - 1.7264e+0 (1.81e-1) - 3.7697e+0 (2.94e-1) - 1.0176e+0 (2.77e-1) 

10 19 3.0648e+0 (5.25e-1) - 1.5842e+0 (2.25e-1) - 2.1758e+0 (2.67e-1) - 5.4852e+0 (6.61e-1) - 1.3936e+0 (4.40e-1) 

MaF1 

3 12 8.2213e-2 (1.73e-4) - 4.6367e-2 (6.65e-4) - 4.7819e-2 (9.03e-4) - 4.5365e-2 (2.57e-3) - 4.3686e-2 (5.66e-4) 

5 14 2.7201e-1 (1.61e-2) - 1.1297e-1 (1.33e-3) - 1.1849e-1 (1.59e-3) - 1.0192e-1 (2.52e-3) + 1.0306e-1 (8.13e-4) 

8 17 4.8857e-1 (6.04e-2) - 2.0090e-1 (1.83e-3) - 2.2414e-1 (4.37e-3) - 4.3575e-1 (2.93e-2) - 1.8083e-1 (6.67e-4) 

10 19 5.4334e-1 (7.94e-2) - 2.3693e-1 (2.84e-3) - 2.7558e-1 (7.12e-3) - 4.7175e-1 (2.13e-2) - 2.1198e-1 (2.00e-3) 

MaF3 

3 12 3.3282e+1 (3.79e+1) - 8.2396e-1 (1.75e+0) - 6.5578e-1 (1.62e+0) - 4.5234e-1 (6.02e-1) - 1.6454e-1 (5.06e-1) 

5 14 1.9444e+2 (1.52e+2) - 3.4347e+1 (2.86e+1) - 3.7931e+1 (2.30e+1) - 1.3121e+1 (1.34e+1) = 1.7278e+1 (1.97e+1) 

8 17 3.5909e+2 (2.98e+2) + 5.4900e+2 (4.04e+2) + 1.7998e+7 (6.29e+7) - 4.9634e+2 (3.35e+2) + 8.6620e+4 (3.14e+4) 

10 19 5.2615e+2 (4.13e+2) + 3.5400e+3 (2.81e+3) + 2.2470e+7 (8.54e+7) - 9.5617e+2 (6.24e+2) + 1.1856e+5 (5.58e+4) 

MaF6 

3 12 6.1612e-2 (2.14e-2) - 5.1449e-3 (1.84e-4) + 5.2437e-3 (1.36e-4) = 5.0008e-3 (1.51e-4) + 5.3736e-3 (2.08e-4) 

5 14 7.9746e-2 (1.34e-2) - 2.6115e-3 (7.95e-4) = 2.3794e-3 (6.43e-5) = 2.1227e-3 (3.43e-5) + 2.3579e-3 (4.71e-5) 

8 17 1.5016e-1 (3.58e-2) - 3.3978e-3 (3.27e-3) - 2.6407e+0 (2.74e+0) - 2.1137e-3 (5.98e-5) - 2.0602e-3 (5.70e-5) 

10 19 1.0117e-1 (2.63e-2) - 6.6432e-3 (1.46e-2) - 7.3535e+0 (3.07e+0) - 2.9332e-3 (1.46e-4) - 1.7875e-3 (7.44e-5) 

MaF7 

3 22 1.0702e-1 (1.57e-3) + 1.7947e-1 (1.47e-1) - 6.5957e-2 (1.87e-3) + 1.0081e-1 (2.26e-2) + 1.1080e-1 (1.79e-1) 

5 24 5.1802e-1 (1.81e-2) - 2.3235e-1 (5.89e-2) - 3.3717e-1 (2.15e-2) - 3.1570e-1 (3.38e-2) - 2.0659e-1 (2.62e-3) 

8 27 1.0117e+0 (6.44e-2) - 6.1132e-1 (9.78e-3) + 2.1599e+0 (4.24e-1) - 1.4129e+0 (2.40e-1) - 6.7197e-1 (2.03e-2) 

10 29 1.5970e+0 (3.46e-1) - 9.7968e-1 (3.76e-2) + 8.9495e+0 (2.36e+0) - 2.0773e+0 (3.92e-1) - 1.0875e+0 (4.35e-2) 

Best/all 4/28 6/28 1/28 4/28 13/28 

+/-/= 6/20/2 8/17/3 1/25/2 6/21/1 - 

Note: ‘+’ ’-’ and ’=’ indicate that the result is significantly better, significantly worse, and statistically similar to that obtained by MaOEA/TPS, respectively. 
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Table 4. The statistical results (mean and standard deviation) of the spread values obtained by RVEA, PREA, CAMOEA, one by 
one EA and MaOEA/TPS on irregular Pareto front with 3, 5, 8 and 10 objectives. 

Problem M D RVEA PREA CAMOEA One by one EA MaOEA/TPS 

WFG1 

3 12 4.5012e-1 (4.32e-2) - 4.0492e-1 (3.43e-2) = 4.8154e-1 (3.37e-2) - 7.8413e-1 (8.10e-2) - 3.8309e-1 (3.37e-2) 

5 14 5.2629e-1 (4.39e-2) - 4.0269e-1 (2.66e-2) - 4.0883e-1 (2.11e-2) - 6.3073e-1 (4.10e-2) - 2.8292e-1 (1.64e-2) 

8 17 9.7563e-1 (7.29e-2) - 4.0675e-1 (2.87e-2) - 4.8411e-1 (2.59e-2) - 8.5599e-1 (1.04e-1) - 2.6534e-1 (1.22e-2) 

10 19 1.0180e+0 (1.10e-1) - 4.2987e-1 (1.55e-2) - 5.0759e-1 (2.56e-2) - 9.5686e-1 (7.46e-2) - 2.6614e-1 (1.18e-2) 

WFG2 

3 12 3.1275e-1 (3.11e-2) - 2.8880e-1 (3.50e-2) - 3.3444e-1 (3.61e-2) - 5.7329e-1 (2.43e-2) - 2.3544e-1 (3.34e-2) 

5 14 3.7255e-1 (3.33e-2) - 3.1897e-1 (2.39e-2) - 3.2647e-1 (2.04e-2) - 5.9689e-1 (1.95e-2) - 2.1401e-1 (2.24e-2) 

8 17 6.7596e-1 (2.87e-2) - 3.8129e-1 (2.68e-2) - 3.9511e-1 (2.43e-2) - 7.9674e-1 (5.50e-2) - 1.9857e-1 (1.21e-2) 

10 19 7.1458e-1 (3.43e-2) - 4.0592e-1 (2.45e-2) - 4.3170e-1 (2.22e-2) - 8.4516e-1 (5.58e-2) - 1.9622e-1 (1.15e-2) 

WFG3 

3 12 2.7490e-1 (3.81e-2) - 2.3847e-1 (2.64e-2) = 3.1593e-1 (3.15e-2) - 4.3074e-1 (2.56e-2) - 2.3219e-1 (2.46e-2) 

5 14 3.8929e-1 (5.11e-2) - 2.1107e-1 (1.04e-2) - 2.5379e-1 (1.48e-2) - 2.3743e-1 (1.67e-2) - 1.6748e-1 (1.11e-2) 

8 17 4.1574e-1 (4.81e-2) - 2.5261e-1 (1.65e-2) - 2.7987e-1 (1.59e-2) - 2.5480e-1 (2.95e-2) - 1.3929e-1 (7.74e-3) 

10 19 3.7905e-1 (7.61e-2) - 2.9755e-1 (2.51e-2) - 3.0542e-1 (1.44e-2) - 2.5656e-1 (1.86e-2) - 1.3263e-1 (8.33e-3) 

MaF1 

3 12 3.2532e-3 (4.09e-3) + 1.4596e-1 (1.84e-2) + 2.4855e-1 (1.86e-2) - 1.7221e-1 (2.80e-2) = 1.8656e-1 (1.61e-2) 

5 14 5.3797e-1 (5.86e-2) - 9.5756e-2 (4.59e-3) + 1.7972e-1 (1.14e-2) - 1.1335e-1 (1.99e-2) + 1.3315e-1 (1.43e-2) 

8 17 9.3607e-1 (6.91e-2) - 8.1176e-2 (5.89e-3) + 1.8197e-1 (1.44e-2) - 2.0432e-1 (4.50e-2) - 1.3628e-1 (1.42e-2) 

10 19 1.1658e+0 (2.09e-1) - 7.5272e-2 (4.27e-3) + 1.8517e-1 (1.16e-2) - 1.9792e-1 (2.09e-2) - 1.2722e-1 (1.55e-2) 

MaF3 

3 12 1.4684e+0 (6.21e-1) - 6.0642e-1 (3.66e-1) - 7.6739e-1 (7.40e-1) - 1.8939e+0 (2.64e-1) - 5.7627e-1 (6.20e-1) 

5 14 2.1329e+0 (1.40e-1) - 1.2514e+0 (2.45e-1) = 1.2716e+0 (1.64e-1) = 1.5047e+0 (4.19e-1) - 1.2943e+0 (4.51e-1) 

8 17 1.9786e+0 (3.13e-1) - 1.7334e+0 (3.78e-1) - 7.6701e-1 (7.89e-2) - 1.4835e+0 (3.07e-1) - 3.4635e-1 (5.23e-2) 

10 19 1.9330e+0 (1.82e-1) - 1.3897e+0 (1.84e-1) - 6.7243e-1 (4.84e-2) - 1.1282e+0 (1.92e-1) - 2.6483e-1 (2.73e-2) 

MaF6 

3 12 4.9815e-1 (2.70e-1) - 2.5090e-1 (2.42e-2) + 2.8743e-1 (3.61e-2) = 2.2443e-1 (2.06e-2) + 2.8117e-1 (2.99e-2) 

5 14 1.5808e+0 (4.37e-1) - 2.7219e-1 (3.74e-2) + 3.0858e-1 (2.19e-2) - 2.2193e-1 (1.57e-2) + 2.9012e-1 (1.69e-2) 

8 17 1.2048e+1 (5.16e+1) - 3.1862e-1 (9.71e-2) = 5.5871e-1 (3.45e-1) - 4.3572e-1 (2.03e-1) - 2.8778e-1 (1.77e-2) 

10 19 -5.7463e+0 (2.75e+1) + 3.5072e-1 (9.64e-2) - 4.3320e-1 (7.55e-2) - 8.6793e-1 (2.11e-1) - 2.7334e-1 (1.50e-2) 

MaF7 

3 22 3.4962e-1 (1.53e-2) - 3.2342e-1 (8.23e-2) - 3.5114e-1 (2.32e-2) - 5.5510e-1 (6.36e-2) - 2.4307e-1 (6.77e-2) 

5 24 3.6472e-1 (4.24e-2) - 2.5372e-1 (2.34e-2) - 2.1884e-1 (1.35e-2) - 3.4641e-1 (1.62e-2) - 1.6575e-1 (1.02e-2) 

8 27 4.1089e-1 (5.30e-2) - 2.4683e-1 (1.12e-2) - 2.6314e-1 (1.61e-2) - 3.5965e-1 (3.67e-2) - 1.0843e-1 (9.44e-3) 

10 29 5.8251e-1 (8.81e-2) - 1.0292e-1 (1.97e-2) + 2.8428e-1 (3.61e-2) - 2.5495e-1 (5.72e-2) - 1.2298e-1 (6.71e-3) 

Best/all 2/28 5/28 0/28 2/28 19/28 

+/-/= 2/26/0 7/17/4 0/26/2 3/24/1 - 

Note: ‘+’,’-’and’=’indicate that the result is significantly better, significantly worse and statistically similar to that obtained by MaOEA/TPS, respectively. 
 
superior performance over its four competitors in most in-
stances of irregular Pareto front. 

4.5. Comparisons of Running Efficiency 

  In this section, Table 5 lists the average running time of 
the five algorithms on each target in order to compare the 
running time efficiency of each algorithm. RVEA has the 

shortest running time, followed by one by one EA and 
CAMOEA, which took less time. PREA and MaOEA/TPS 
took more time, and MaOEA/TPS was worse than PREA. 
This is because of the two-stage selection algorithm pro-
posed in this paper, in the first stage, the index method is 
used to promote the improvement of convergence, and the 
second stage uses the method based on parallel distance 
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similarity clustering to improve the diversity of the popula-
tion. They are more time-consuming in the calculation pro-
cess, which reduces the running time efficiency of 
MaOEA/TPS. 

CONCLUSION AND FUTURE WORK 

 The paper proposes a many-objective evolutionary algo-
rithm based on two-phase selection, termed MaOEA/TPS, 
for solving MaOPs with different shapes of Pareto fronts. 
The convergence area is constructed through indicators to 
improve the convergence ability of the algorithm in the first 
phase of the algorithm, and then individuals are selected 
through clustering based on parallel distance similarity to 
obtain a uniformly distributed solution set in the second phase 
of the algorithm. The algorithm is compared with RVEA, 
PREA, CAMOEA, one by one EA on the problem with regu-
lar Pareto PF and irregular Pareto PF. The results show that 
MaOEA/TPS has quite a competitive performance compared 
with the several algorithms on most test problems. Although 
the algorithm in this paper has achieved good results, the op-
timization problem in the real environment is more difficult, 
therefore, applying the algorithm proposed in this paper to 
real problems will be the next research direction. 
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