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� Abstract: Aims: The main goal of this paper is to address the issues of low-quality offspring solutions 
generated by traditional evolutionary operators, as well as the evolutionary algorithm's inability to 
solve multi-objective optimization problems (MOPs) with complicated Pareto fronts (PFs). 

Background: For some complicated multi-objective optimization problems, the effect of the multi-
objective evolutionary algorithm based on decomposition (MOEA/D) is poor. For specific complicated 
problems, there is less research on how to improve the performance of the algorithm by setting and 
adjusting the direction vector in the decomposition-based evolutionary algorithm. Considering that in 
the existing algorithms, the optimal solutions are selected according to the selection strategy in the 
selection stage, without considering whether it could produce the better solutions in the stage of indi-
vidual generation to achieve the optimization effect faster. As a result, a multi-objective evolutionary 
algorithm based on two reference points decomposition and historical information prediction is pro-
posed. 

Objective: In order to verify the feasibility of the proposed strategy, the F-series test function with 
complicated PFs is used as the test function to simulate the proposed strategy. 

Methods: Firstly, the evolutionary operator based on historical information prediction (EHIP) is used 
to generate better offspring solutions to improve the convergence of the algorithm; secondly, the de-
composition strategy based on ideal point and nadir point is used to select solutions to solve the MOPs 
with complicated PFs, and the decomposition method with augmentation term is used to improve the 
population diversity when selecting solutions according to the nadir point. Finally, the proposed algo-
rithm is compared to several popular algorithms by the F-series test function, and the comparison is 
made according to the corresponding performance metrics. 

Results: The performance of the algorithm is improved obviously compared with the popular algo-
rithms after using the EHIP. When the decomposition method with augmentation term is added, the 
performance of the proposed algorithm is better than the algorithm with only the EHIP on the whole, 
but the overall performance is better than the popular algorithms. 

Conclusion: The experimental results show that the overall performance of the proposed algorithm is 
superior to the popular algorithms. The EHIP can produce better quality offspring solutions, and the 
decomposition strategy based on two reference points can well solve the MOPs with complicated PFs. 
This paper mainly demonstrates the theory without testing the practical problems. The following re-
search mainly focuses on the application of the proposed algorithm to practical problems such as robot 
path planning.�
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1. INTRODUCTION 

 The multi-objective evolutionary algorithm based on de-
composition [1] decomposes a multi-objective optimization  
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problem (MOP) [2] into a set of single-objective optimiza-
tion problems by setting a set of uniformly distributed refer-
ence vectors. When solving the MOPs, especially high-
dimensional MOPs, MOEA/D shows good results in con-
vergence and distribution. This multi-objective evolutionary 
algorithm based on decomposition has been recognized as a 
promising method for solving simple MOPs, but for some 
complicated MOPs, the effect of MOEA/D is poor [3]. For 
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specific complicated problems, there is less research on how 
to improve the performance of the algorithm by setting and 
adjusting the direction vector in the evolutionary algorithm 
based on decomposition [4, 5]. Based on this, in order to 
improve the ability of MOEA/D to solve the MOPs with 
complicated PFs, Qi et al. [6] proposed a multi-objective 
evolutionary algorithm based on decomposition with adap-
tive weight adjustment, where a new initialization method of 
weight vectors to generate the initial set of weight vectors is 
introduced. The algorithm used an adaptive weight vector 
adjustment strategy to detect overcrowded solutions on PFs 
at the solution selection stage and then adjust the weight 
vectors at more crowded solutions to where the solutions are 
sparse as a way to ensure distribution of population. This 
algorithm increases the computational complexity because 
the weight vectors have to be adjusted continuously. Wang 
et al. [7] studied the influence of reference point setting on 
the selection of solutions in evolutionary algorithms based 
on decomposition. In order to balance diversity and conver-
gence, a new MOEA/D based on ideal point and nadir point 
was proposed, and an improved global replacement strategy 
was used to enhance the performance in individual selec-
tion. In this algorithm, the whole population is first normal-
ized to two sets according to ideal point and nadir point, and 
then solutions are selected in different sets according to dif-
ferent weight vectors, which effectively improved the diver-
sity of the population but still had shortcomings in terms of 
convergence. V. Ho-Huu et al. [8] proposed an improved 
MOEA/D (iMOEA/D) for the bi-objective optimization 
problem in order to solve the practical application problems 
of PF with a long tail or a sharp peak, which usually has 
complicated characteristics. To demonstrate the perfor-
mance of iMOEA/D, it is applied to the optimal design 
problem of the truss structure. In iMOEA/D, the set of 
weight vectors defined in MOEA/D is numbered and divid-
ed into two subsets: one is the set of odd weight vectors, and 
the other is the set of even weight vectors. Then a two-stage 
search strategy based on the MOEA/D framework is pro-
posed to optimize the corresponding populations. In addi-
tion, an adaptive substitution strategy and a stopping criteri-
on are introduced to improve the overall performance of 
iMOEA/D. The multi-objective evolutionary algorithm 
based on decomposition with two reference points can ef-
fectively enhance the diversity of the populations, but the 
convergence is still insufficient. 
 In order to further improve the convergence, Bi et al. 
proposed an improved NSGA-III [9] algorithm based on 
elimination operator (NSGA-III-EO) [10] based on Non-
dominated Sorting Genetic Algorithms III (NSGA-III). In 
this algorithm, firstly, the reference points with the maxi-
mum number of niches are identified by the elimination 
operator. Then the relevant individuals are ranked using the 
penalty-based boundary intersection (PBI). In the process of 
selecting solutions to ensure convergence, the method of 
eliminating poorer individuals is used instead of the method 
of selecting better individuals. This algorithm can better 
improve convergence and evolutionary efficiency. Wu et al. 
[11] proposed a multi-objective evolutionary algorithm 
based on adversarial decomposition. This algorithm utilizes 
the complementary characteristics of different scalarizing 
functions in a single paradigm, and the diverse population 

and the convergence population are introduced to co-evolve. 
In order to avoid allocating redundant computing resources 
to the same area of PF, the two populations are matched into 
one-to-one solution pairs on PF according to their working 
areas. In the process of selection, each solution pair contrib-
utes at most one main mating parent node. This algorithm 
also has great advantages in balancing convergence and 
diversity. Liang et al. [12] proposed a two-round environ-
ment selection strategy to seek a good compromise between 
diversity and convergence of the population. In the first 
round, the solutions with smaller neighborhood densities are 
selected to form a candidate pool, in which the neighbor-
hood density of solutions is calculated based on a new adap-
tive location transformation strategy. In the second round, 
the solutions with the best convergence are selected from 
the candidate pool and inserted into the next generation. 
This process is repeated until a new population is generated. 
The two-round selection strategy works well in balancing 
population diversity and convergence, but it still has signifi-
cant limitations for solving complex irregular optimization 
problems. 
 All the above algorithms select the optimal solution 
based on the selection strategy in the selection stage without 
considering whether a better solution can be generated in the 
individual generation stage to facilitate optimization. In con-
trast, in the dynamic multi-objective optimization algorithm 
[13-15], the PF of the next environment can be predicted 
based on the PF in the historical environment when the en-
vironment changes. In view of this, considering that the his-
torical solution set may have some guiding effect on the 
generation of new solutions, in this paper, we introduce his-
torical information [16] and generate the next-generation 
solutions according to the corresponding prediction model, 
and combine it with two reference point decomposition 
method to solve the MOPs with complicated PFs. 
 Based on the above analysis, this paper proposes a multi-
objective evolutionary algorithm based on two reference 
points decomposition and historical information prediction. 
In order to improve convergence, in this algorithm, a certain 
set of historical solutions is retained, and the prediction 
model is combined with differential evolution by introduc-
ing an evolutionary operator based on historical information 
prediction (EHIP) to generate new solutions with better 
quality; to improve diversity, the solutions are selected us-
ing a decomposition strategy with two reference points, the 
ideal point and the nadir point [17], and the augmented 
achievement scalarizing function (ASF) with an enhance-
ment term is used in the selection of solutions based on the 
nadir point. 
 The rest of the paper is organized as follows. Second 
half of section 1 contains background knowledge of the the-
oretical basis of the research. Section 2 presents the details 
of the proposed strategies and the proposed algorithm. Sec-
tion 3 contains the analysis of experimental results. Section 
4 contains the conclusions. 

1.1. Basic Concepts 

 There are two kinds of multi-objective optimization al-
gorithm [18]: maximizing objective function value and min-
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imizing objective function value. Here, minimizing objec-
tive function value is taken as an example in Eq. (1): 

       

  (1)

 

Where  is n-dimensional decision 
variable, is the feasible search region,  is a M-
dimensional vector of objective functions, and  is the 
objective space,  are p inequality 

constraints,  are q equality con-
straints. In the following, several definitions of Pareto dom-
ination [19, 20] are given. 

 Pareto domination: for any two solutions x, y ∈Ω�if 

fi (x) ≤ fi ( y)  for ∀i ∈{1,2,⋅⋅⋅,M} , and if f j (x) < f j ( y)  for 

∃j ∈{1,2,⋅⋅⋅,M} , x is said to dominate y (denoted as x ≺ y ). 

 Pareto optimal solutions: let x ∈Ω , if there does not 
exist y ∈Ω  satisfying y x� , x is called Pareto optimal so-
lution. 

The set of Pareto optimal solutions: composed by all Pa-
reto optimal solutions, which can be defined as: 
PS ={x | x ∈Ω∧¬∃y ∈Ω, y ≺ x}.

 Pareto front: It is the images of the objective function 
values corresponding to the solutions of PF, which can be 
defined as . 

 ideal point: a point  is called the ideal 

point if . 

 nadir point: a point is called the 

nadir point if . 

1.2. Research Motivation 

1.2.1. Decomposition Method based on Two Reference 
Points 

Multi-objective evolutionary algorithm based on decom-
position can produce a group of uniform weight vectors; 
each weight vector corresponds to a solution, so the optimal 
solution is uniformly distributed with the weight vectors. 
However, the multi-objective evolutionary algorithm based 
on decomposition shows its shortcomings when solving 
optimization problems with extremely irregular PF. As 
shown in Fig. (1a), when the PF is extremely convex, and 
the weight vector passing through the ideal point is used, the 
optimal solutions generated according to the weight vectors 
have regular distribution. However, it shows that the situa-
tions in the middle are dense, and the situations in the 
boundary are sparse. Similarly, as shown in Fig. (1b), when 
the PF is extremely convex, and the weight vector passing 
through the nadir point is used, it shows the situations that 
in the middle are sparse and the situations in the boundary 
are dense. As shown in Fig. (2), when the nadir point is in-
troduced, according to the decomposition of the weight vec-
tor passing through the nadir point, the situation is just com-
plementary to the situation passing through the ideal point; 
thus combining the two reference points will effectively 
solve this situation. Therefore, this paper introduces the ide-
al point and the nadir point to solve the complex multi-
objective optimization problem with an irregular front. 
 In this paper, the Das and Dennis system scheme de-
composition technique [21] is used to generate a set of uni-
formly distributed reference points on the unit hyperplane, 
and the vectors from the origin to the reference points form 
the weight vectors. The number of reference points is shown 
in Eq. (2).

              (2) 

Where N is the number of reference points, H is a parame-
ter, and M is the dimension of the objective, the sum of all 
elements in  is 1, and each dimensional 
element of w is in .

T
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Fig. (1). Pareto optimal points obtained based on and respectively. 
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2. METHODS 

2.1. The Proposed MOEA/D-EHIP-ASF 

 In this section, we proposed a multi-objective evolution-
ary algorithm based on two reference points decomposition 
and historical information prediction, and we call this algo-
rithm MOEA/D-EHIP-ASF. Next, the proposed algorithm is 
introduced in detail. 

 
Fig. (2). Pareto optimal points obtained based on both and . 

 
2.1.1. Initialization 

(1). Initialize Weight Vectors 

 According to Das and Dennis system scheme decompo-
sition technology, two groups of weight vectors are initial-
ized. The directions of the two groups of weight vectors are 
the same. One group passes through the ideal point, and the 
other group passes through the nadir point. The neighbor-
hood of two groups of weight vectors is calculated accord-
ing to Euclidean distance, which is used for the evolutionary 
operation to generate new solutions, where the set of the 
neighborhood is represented by B. 
(2). Initial Population 

 The decision variables of each solution in the population 
are obtained by random sampling in the decision space. After 
the initial population is obtained, the population is divided into 
two populations, which evolve according to the ideal point and 
the nadir point, respectively. In order to initialize the ideal point 
and the nadir point, we first need to sort the initial population to 
get the non-dominated solutions set NP. The ideal point and the 
nadir point are z j

* = min{ f j (x) | x ∈NP, j =1,⋅⋅⋅,M}  and 

z j
nad = max{ f j (x) | x ∈NP, j =1,⋅⋅⋅,M} , respectively. 

2.1.2. Normalization 

 Since many MOPs have different ranges of PFs, in order 
to facilitate the processing of objective function values with 
different ranges of PFs in the same range, the objective val-
ues of all solutions in the population need to be normalized 
before optimization. For each solution x, the calculation 
formula of the normalized objective function value is calcu-
lated in Eq. (3) as follows: 

           (3) 

 No matter which weight vectors is used, the whole popu-
lation is normalized according to the ideal point. 

2.2. Evolutionary Operator based on Historical Infor-
mation Prediction 

 With the increase of the number of iterations, the quality 
of the solutions in the population will be better and better, 
and the solutions in the population will be closer to the real 
front. In the traditional evolutionary algorithm, only the 
contemporary optimal solutions are retained as the selection 
pool for evolutionary operation, and the historical solution 
sets of each previous generation are discarded. In fact, the 
historical solution sets of previous generations can reflect 
the convergence direction of the Pareto solution set to the 
real front to a certain extent, so the historical information 
can be used to guide the individuals to a better direction to 
predict the next generation of individuals. The multi-
objective evolutionary algorithm based on decomposition 
generates a better solution in the direction of the weight 
vector to replace the solution of the previous generation in 
each iteration, so the next generation solutions can be con-
sidered to be predicted based on historical information in the 
direction of the weight vectors. 

 The optimal solutions associated with each weight vec-
tor at each iteration can form a sequence [22]: 

,  denotes the solution associated with 
the i-th weight vector when the current iteration number is k. 
this sequence can reflect the rule of change of the optimal 
solutions associated with a certain weight vector to the real 
solutions. The prediction of the solution associated with the 
i-th weight vector in the (k+1)-th iteration can be expressed 
in Eq. (4) as follows:

           (4) 

Where f is the model for predicting the next-generation solu-
tions. In this paper, the Prem model proposed by Aimin 
Zhou is used to predict the problem that the Pareto optimal 
solutions change linearly. The new individuals predicted are 
expressed as follows in Eq. (5): 

1 ( )i i i i
k k k k t ξ+ −= + − +x x x x            (5) 

Where t is the step size and  follows the normal distribu-
tion as represented in Eqs. (6 and 7). 

             (6) 

            (7) 

 As shown in Fig. (3), The solid black circles represent 
the best individuals of the present generation, the hollow 
circles represent the best individuals of the previous genera-
tion, and the triangles represent the next generation of indi-
viduals generated by the evolutionary operator based on 
historical information prediction. The red arrow indicates 
the evolutionary direction of the individuals on the corre-
sponding weight vectors. In general, the shape of PF is rela-
tively simple in the objective space. With the increase of the 
number of iterations, the change direction of PF can be 
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known generally, which is basically moving to the real PF. 
However, the shape of PS in the decision space is complex 
and unknowable, and the movement direction of PS is more 
complicated. When the step size is small, it can be approxi-
mately considered that PS moves linearly toward the real PS 
with the increase of the number of iterations according to 
the differential principle, while the pattern of PS movement 
cannot be accurately predicted when the step size is large. 

 
Fig. (3). Distribution of solutions predicted by the evolutionary 
operator. (A higher resolution / colour version of this figure is 
available in the electronic copy of the article). 

 In this paper, we proposed an evolutionary operator 
based on historical information prediction (EHIP) by com-
bining the prediction of solutions based on historical infor-
mation with the original differential evolutionary (DE) [23] 
and adding a scaling factor to the prediction term to increase 
its accuracy. In order to increase the diversity, we add the 
contemporary population information, that is, horizontal in-
formation, to avoid falling into local convergence. The ex-
pression of EHIP is generated in Eqs. (8 and 9) as follows: 

1 ( ) (( ) )i i i h i i
k k k k k k tF E ξ+ −= + ∗ − + ∗ − +x x x x x x          (8) 

         (9) 

Where ( )i h
k kF ∗ −x x  is horizontal information, F is the 

control parameter of differential evolution, E is scaling fac-
tor, CR is crossover probability. i

kx  and xk
h are the j-th and 

h-th solutions selected from the current mating pool. 1,
i
k ry +  

is the r-th decision variable of the solution in the (k+1)-th 
iteration generated by the evolutionary operator. 
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Algorithm 1. MOEA/D-EHIP-ASF 

Input� 

1) Termination condition; 

2) The number of population: N; 

3) The number of objectives: M; 

4) Neighborhood: B; 

5) The set of weight vectors�  and � 

Output� 

The set of optimal solutions: EP; 

1: Initial population H;

2: while termination condition not satisfied do 

3:   if rand<  

4:    ; 

5:   else 

6:    ; 

7:   end 

8:  Use EHIP to generate offspring population Q; 

9:  ; 

10:  update and ; 

11:  Normalize population R according to ; 

12:  Correlate the solution based on angle According to and ; 

13:  Use double reference point selection strategy to select the optimal solutions;

14:  Update H according to non-dominated sorting; 

15:  Preserve the set of historical solutions; 

16: end 

1 2 /2{ , , , }NW = ⋅⋅⋅w w w 1 2 /2{ , , , }Nγ = ⋅⋅⋅γ γ γ

δ
( )E B i←

{1,2, , }E N← ⋅ ⋅ ⋅

R H Q← �
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2.3. Decomposition Approach of Two Reference Points 

2.3.1. Tchebycheff Decomposition Approach 

 Among many approaches of decomposing MOPs into a 
set of scalar optimization subproblems [24, 25], the penalty-
based boundary intersection (PBI) approach can effectively 
solve the MOPs with convex PFs, while Tchebycheff (TCH) 
decomposition approach has an obvious effect on the MOPs 
with non-convex PFs. The TCH decomposition approach 
based on  can be defined as follows in Eq. (10): 

        (10) 

Where w is the weight vector of the corresponding subprob-
lem, it can be expressed as follows in Eq. (11): 

        (11) 

 TCH decomposition approach based on  can be de-
fined as follows in Eq. (12): 

        (12) 

2.3.2. ASF Decomposition Approach 

 The ASF decomposition approach based on  can be 
defined as follows in Eq. (13): 

{ }nad nad nad

1 1

 ( | , ) ( ( | ) 1) ( ( | ) 1)

.   

M
asf

j j j jj M j
max g min w f f

s t

α γ
≤ ≤ =

= − + −

∈Ω

∑x γ z x z x z

x

 (13) 

 The difference between ASF and TCH is that ASF uses 
the  instead of the , and increases the augmentation 
term,  is the augmentation coefficient. The augmentation 
term in ASF can increase the non-dominated strength of the 
solutions. When  is zero, ASF is the same as TCH. The 
schematic diagram of the ASF decomposition approach is 
shown in Fig. (4).  

 
Fig. (4). ASF decomposition approach. (A higher resolution / col-
our version of this figure is available in the electronic copy of the 
article). 

 

 As shown in Fig. (4), the area surrounded by a black 
dotted line and coordinate axis is the area dominated by F(x) 

when  is greater than zero, and the area surrounded by a 
red dotted line and coordinate axis is the area dominated by 
F(x) when  is equal to zero. It can be clearly seen from 
the figure that the area dominated by F(x) is larger when 
is greater than zero. Therefore, when  is greater than zero, 
F(x) dominates F(y), so the search range can be expanded. 

2.4. Decomposition of Subproblems 

The whole population is decomposed into N subpopula-
tions according to the angle between the weight vectors and 
each individual. Each subpopulation corresponds to the  
weight vectors closest to its angle, and then only the indi-
viduals closest to each weight vector are found as the indi-
viduals in each subpopulation, and the subpopulation corre-
sponding to the two reference points is divided in the way 
shown in Eq. (14). 

 (14)  

Where  denotes the normalized objective function 
value of the individual nearest to the corresponding weight 
vector, and  is the predefined weight vector, which is tak-
en as and depending on the weight vector as well as 
the reference point, respectively. In the whole population, 

 is the angle between  and , 

and  is the subpopulation composed of the i-th vector  
and its solutions with the smallest angle. The angle is calcu-
lated by the absolute value of cosine value to ensure con-
sistency with the change of the angle, and its calculation 
formula is given as follows in Eq. (15): 

          (15) 

 Similarly, when the weight vector is , the calculation 
formula is given as follows in Eq. (16): 

         (16) 

 The principle of the objective space decomposition 
method based on an angle is shown in Fig. (5). As shown in 
the figure, any two weight vectors  and  are selected, 

and six different individuals are distributed around them. In 
the traditional multi-objective evolutionary algorithm, the 
calculation method based on Euclidean distance is generally 
used to find the individuals associated with the weight vec-
tor. For example, in the process of decomposition, only  

and  are divided into the same interval according to Eu-
clidean distance. This decomposition method improves the 
convergence of the algorithm but has some defects in main-
taining diversity. When using the decomposition strategy of 
angle-based objective space to divide the subspace, not only 

 and but also  are included in the same subinterval, 
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which will maintain the diversity of the population to a great 
extent in the process of selecting solutions. 

 
Fig. (5). Decomposition method of objective space based on angle. 

 

2.5. Global Selection Strategy 

 In the process of solution selection, the population is 
divided into two parts, the first half corresponds to the ideal 
point, and the TCH decomposition approach based on the 
ideal point is used to select the solutions; the second half 
corresponds to the nadir point, and the ASF decomposition 
approach based on the nadir point is used to select the solu-
tions. Because there is no nearest individual around the 
weight vector when the individual is associated, the weight 
vector which is not associated with the individual is put into 
the set V. At this time, the neighborhood individual of the 
weight vector is found and selected until it has a corre-
sponding solution, it is removed from the set V. Set P stores 
the optimized individuals, while set R stores the non-
optimized individuals. The pseudo-code of the selection 
strategy based on two reference points is presented in algo-
rithm 2.  

3. RESULTS AND DISCUSSION 

 All experiments in this paper were implemented using 
Matlab codes and run on a personal computer having an 
Intel(R) Core(TM) i5-10400 CPU, 2.90 GHz (processor), 
and 8.00 GB (RAM).  

3.1. Benchmark Problems 

 This chapter uses F series problems as test functions, 
which are shown in Table 1. The PSs of the three multi-
objective optimization problems F1, F2, and F3 are linear 
and unimodal [26], and their PFs shapes are complicated. 
The distribution range of PF in each dimension of F1 is 
quite different, and one dimension is ten times the other 
dimension. The PF of F2 is a very convex linear curve with 
two segments. The PF of F3 is concave in part and convex 
in part. These three test functions test the ability of the algo-
rithm to deal with problems of complex PFs. The PSs of F4 
and F5 are unimodal, indivisible, and complicated. The con-
vergence degree of solutions of two test problems is differ-
ent, and the solutions of the boundary are more difficult to 
converge than the middle. F6 and F7 are two multimodal 
multi-objective optimization problems with complicated PSs 

shapes. The PSs of F8 and F9 are unimodal, indivisible, and 
complicated. The PFs of the two test problems is an inverted 
triangle. 
 In order to verify its feasibility, it is compared with the 
classical algorithms MOEA/D-MR, MOEA/D-DE [27], 
NSGA-III-EO, 2REA and MOEA-TDA [28]. 

3.2. Parameter Settings

 The population size and number of calculations were 
kept the same for all algorithms to ensure a fair comparison. 
The crossover probability CR is 1.0, the control parameter 
of differential evolution F is 0.45, and the scaling factor E is 
0 when the number of calculations was less than 10*N; oth-
erwise, E is 0.05 and is 0.8. All algorithms were calcu-
lated 150,000 times on each test function and run 20 times 
independently. The test function parameters are set as 
shown in Table 2. 

3.3. Performance Metrics

 In order to demonstrate the performance of the algorithm 
more accurately, we usually need to make a quantitative 
comparison. In order to evaluate the convergence and diver-
sity, we use the convergence metric GD [29] and diversity 
metric DM [30] as the Performance metrics, respectively. In 
order to evaluate the comprehensive performance, we use 
the more widely used comprehensive performance metrics 
IGD [31] and HV [32]. 
1) Generational Distance (GD): It was proposed by Van 

and Lamont, which represents the average distance 
from the optimal solutions set to the real Pareto front. 
It is computed by Eq. (17). 

          (17) 

Where n is the number of standard points selected from the 
real Pareto front and  is the minimum Euclidean distance 
between the i-th individual in the optimal solutions set and 
the real Pareto front. It is noted that the method with a lower 
GD metric is better. 
2) Diversity Metric (DM): The principle of the diversity 

metric is to project the non-dominated points ob-
tained by each generation onto a suitable hyperplane, 
thus losing one dimension of the points. The hyper-
plane is divided into many small grids, and the diver-
sity metric is defined depending on whether each 
grid contains a non-dominated point. If all the grids 
are represented by at least one point, it means the 
best possible diversity measure is achieved. If some 
grids are not represented by a non-dominated point, 
the diversity is poor. It is computed by Eqs. (18-20). 

        (18) 

*1,   if the grid has a representative point in 
( , , )

0   otherwise
P

H i j
⎧

⋅ ⋅ ⋅ = ⎨
⎩ �

 (19) 
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Algorithm 2. Selection strategy based on two reference points 

Input: 

1) Mixed population�R; 

2) The number of population�N; 

3) The set of weight vectors� 1 2 /2{ , , , }NW = ⋅⋅⋅w w w  and 1 2 /2{ , , , }Nγ = ⋅⋅⋅γ γ γ ; 

4) Ideal point and nadir point� *z  and nadz ; 

Output�P 

1: for i←1 to N do 

2:    if iC ≠ Φ  then 

3:      { }arg  min ( | , )
k

i

j st k i

C
g

∈
=

x
x x λ z ; 

4:      if ( | , ) ( | , )st j i st i ig g<x λ z x λ z  then 

5:        { }jP P← x� , ( ) \{ }iV W← γ λ� ; 

6:         if j R∈x  then 

7:           { }jR R← x� ; 

8:         end 

9:      end 

   // if i<=size(W), λ  is replaced by w, z is replaced by *z , st is replaced by te 

   // if i>size(W), λ  is replaced by γ , z is replaced by nadz , st is replaced by asf 

10:   end 

11: end 

12: while V ≠ Φ  do 

13:      for each i V∈w  do 

14:         rT solutions nearest to the weight iw  are selected from the set R; 

15:         { }arg  min ( | , )
k

i

j st k i

C
g

∈
=

x
x x λ z ; 

16:         if ( | , ) ( | , )st j i st i ig g<x λ z x λ z  then 

17:           { }jP P← x� , { }\ iV V← λ , { }\ jR R← x ; 

18:         else 

19:           { }jP P x← � , \{ }iV V λ← ; 

20:         end 

21:      end 

   // if i<=size(W), λ  is replaced by w, z is replaced by *z , st is replaced by te 

   // if i>size(W), λ  is replaced by γ , z is replaced by nadz , st is replaced by asf 

22: end      
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Table 1. F series test functions. 

Test Function Function Expression Constraint Condition 

F1 
1

2

0.7

1 1
1

0.7

2 1
2

1 2

21-cos(0.5 ) 0.9sin( )
| |

210 10sin(0.5 ) 0.9sin( )
| |

where { | is odd and 2 } and { | is even and 2 }

j
j J

j
j J

jf x x
J n

jf x x
J n

J j j j n J j j j n

ππ

ππ

∈

∈

= + −

= − + −

= ≤ ≤ = ≤ ≤

∑

∑  

1 [0,1]x ∈ �

[ 1,1]ix ∈ − �

2 i n≤ ≤  

F2 

1

2

2

1 1
1

1 1
2

2

1

2

1 2

sin( )2 +  
| |

sin( )21 19 +        if  0.005
| |

sin( )1 2 +        otherwise
19 19 | |

0.9sin( ),   2,..., .

where { | is odd and 2 } and { | i

j
j

j J

j
j

j J

j
j

j J

j j

y
f x y

J

y
x y x

J
f

yx y
J

jy x j n
n

J j j j n J j j

π
π

π
π
π
π

π

∈

∈

∈

= +

⎧
− + ≤⎪

⎪
⎨
⎪ − +⎪
⎩

= − ∈

= ≤ ≤ =

∑

∑

∑

s even and 2 }j n≤ ≤

 
1 [0,1]x ∈ �

[ 1,1]ix ∈ − �

2 i n≤ ≤ �

F3 
1

2

2
1 1 1 1

1

2
2 1 1 1

2

1 2

2 ( 0.8 cos(6 ))
| |

21 ( 0.8 sin(6 ))
| |

where { | is odd and 2 } and { | is even and 2 }

j
j J

j
j J

jf x x x x
J n

jf x x x x
J n

J j j j n J j j j n

ππ

ππ

∈

∈

= + − +

= − + − +

= ≤ ≤ = ≤ ≤

∑

∑  
1 [0,1]x ∈ �

[ 1,1]ix ∈ − �

2 i n≤ ≤ �

F4 
1

2

1
2

1 1 1
1

2
2 1 1 1

2

1 2

62 ( 0.8 cos( ))
| | 3

21 ( 0.8 sin(6 ))
| |

where { | is odd and 2 } and { | is even and 2 }

j
j J

j
j J

jx
nf x x x

J
jf x x x x

J n
J j j j n J j j j n

ππ

ππ

∈

∈

+
= + −

= − + − +

= ≤ ≤ = ≤ ≤

∑

∑  

1 [0,1]x ∈ �

[ 1,1]ix ∈ − �

2 i n≤ ≤  

F5 
1

2

2 2
1 1 1 1 1 1

1

2 2
2 1 1 1 1 1

2

1 2

2 4{ [0.3 cos(24 ) 0.6 ]cos(6 )}
| |

2 41 { [0.3 cos(24 ) 0.6 ]sin(6 )}
| |

where { | is odd and 2 } and { | is even and 2 }

j
j J

j
j J

j jf x x x x x x
J n n

j jf x x x x x x
J n n

J j j j n J j j j n

π ππ π

π ππ π

∈

∈

= + − + + +

= − + − + + +

= ≤ ≤ = ≤ ≤

∑

∑  
1 [0,1]x ∈ �

[ 1,1]ix ∈ − �

2 i n≤ ≤ �

F6 

1

2

2
1 1 2 2 1

1

2
2 1 2 2 1

2

1

2

2cos(0.5 )cos(0.5 ) ( 2 sin(2 ))
| |

2cos(0.5 )sin(0.5 ) ( 2 sin(2 ))
| |

where { | 3 , and 1 is a multiplication of 3},
{ | 3 , and 2 is a multiplication of 3}

j
j J

j
j J

jf x x x x x
J n

jf x x x x x
J n

J j j n j
J j j n j

ππ π π

ππ π π

∈

∈

= + − +

= + − +

= ≤ ≤ −
= ≤ ≤ −

∑

∑

3

,
{ | 3 , and is a multiplication of 3}.J j j n j= ≤ ≤

1 [0,1]x ∈ �

[ 1,1]ix ∈ − �

2 i n≤ ≤ �

F7 

1

2

2
1 1

1

2
2 1

2

1 2
3( 2)0.5(1.0 )

2
1

2 (4 cos(8 ) 1.0)
| |

21 (4 cos(8 ) 1.0)
| |

where { | is odd and 2 } { | is even and 2 },

, 2,..., .

j j
j J

j j
j J

j
n

j j

f x y y
J

f x y y
J

J j j j n and J j j j n

y x x j n

π

π

∈

∈

−+
−

= + − +

= − + − +

= ≤ ≤ = ≤ ≤

= − =

∑

∑  
1 [0,1]x ∈ �

[ 1,1]ix ∈ − �

2 i n≤ ≤ �

(Table 1) Contd… 
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Test Function Function Expression Constraint Condition 

F8 

2
1 1 2

3

2
2 1 1 2

3

2
3 1

3

2

1

1

1

0.9 sin(2 ),     3,...,

n

j
j

n

j
j

n

j
j

j j k
k

f x x y

f x x x y

f x y

jy x x j n
n
ππ

=

=

=

=

= − +

= − + +

= +

= − + ∈

∑

∑

∑

∏  

1 2, [0,1]x x ∈ �

[ 1,1]ix ∈ − �

3 i n≤ ≤ �

F9 

21 2
1

3

21 2
2

3

22
3

3

2

1

1 cos( )cos( ) 0.01 (100 cos(4 ) 1)
2 2

1 cos( )sin( ) 0.01 (100 cos(4 ) 1)
2 2

1 sin( ) 0.01 (100 cos(4 ) 1)
2

0.9 sin(2 ),     3,...,

n

j j
j

n

j j
j

n

j j
j

j j k
k

x xf y y

x xf y y

xf y y

jy x x j n
n

π π π

π π π

π π

ππ

=

=

=

=

= − + − +

= − + − +

= − + − +

= − + ∈

∑

∑

∑

∏

 
1 2, [0,1]x x ∈ �

[ 1,1]ix ∈ − �

3 i n≤ ≤ �

 
Table 2. Settings of test function parameters. 

Test Function Dimension of target (M) Dimension of decision variable (D) Population size(N) 

F1~F7 2 30 200 

F8~F9 3 10 600 

 
1,   if ( , , ) 1 and the grid has a representative point in 

( , , )
0   otherwise

H i j F
h i j

⋅ ⋅ ⋅ =⎧
⋅ ⋅ ⋅ = ⎨

⎩

�
�

 (20) 

 The value of m(h(i,j…)) corresponding to h(i,j…) is 
shown in the Table 3. H(i,j…) is the same as h(i,j…). 
Table 3. The value of m(h(i,j…)) and h(i,j…). 

h(…j-1…) h(…j…) h(…j+1…) m(h(…j…)) 

0 

0 

1 

0 

1 

0 

1 

1 

0 

0 

0 

1 

1 

1 

0 

1 

0 

1 

0 

1 

0 

0 

1 

1 

0.00 

0.50 

0.50 

0.67 

0.67 

0.75 

0.75 

1.00 

 
 P* is a set of reference points obtained by uniform sam-
pling on the real Pareto front, P is a set of approximate op-
timal solutions obtained by using the evolutionary algo-
rithm, and F is the set of non-dominated P*  in the P. It is 
noted that the method with a larger DM metric is better. 
 
3) Inverse Generation Distance (IGD): IGD takes into 

account the convergence and diversity of the optimal 
solutions set. It is calculated by the average distance 

between a set of reference points uniformly sampled 
on the real Pareto front and the optimal solutions set. 
The definition of  and P is the same as DM. The 
IGD is defined as follows in Eq. (21): 

         (21) 

 In the above formula  represents the cardinality of 

, that is, the number of solutions in the set and 
 represents the Euclidean distance from  to 

its nearest solution. It is noted that the method with a lower 
IGD metric is better. 

4) Hypervolume (HV): HV is also used to evaluate the con-
vergence and diversity of the optimal solutions set, which is 
obtained by setting a reference point in the objective space 
instead of the real Pareto front. Suppose 

 is a reference point dominated by all 
Pareto optimal solutions in the objective space, then the 
hypervolume represents the size of the region dominated by 
the solutions in the optimal solutions set P, and  is the 
boundary of the region in the objective space. The HV is 
defined as follows in Eq. (22): 

      (22) 
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Where VOL(.) is Lebesgue measurement, It is noted that the 
method with a larger HV metric is better. 

3.4. Effectiveness of the Proposed Strategies 

 In order to show the advantages of the proposed algo-
rithm more objectively, the performance of all algorithms is 
analyzed quantitatively. Firstly, the influence of the pro-
posed EHIP and ASF decomposition strategy on the con-
vergence, diversity, and comprehensive performance of the 
algorithm is discussed, respectively. Then, the comprehen-
sive performance of the proposed algorithm is compared 
with other algorithms. Among them, MOEA/D-EHIP only 
adds EHIP on the basis of MOEA/D-MR, and MOEA/D-
EHIP-ASF introduces ASF decomposition strategy on the 
basis of MOEA/D-EHIP. In this way, the influence of these 
two strategies on the algorithm can be discussed and veri-
fied, respectively. The data in Tables 4-7 are the expected 
values and standard deviations (in brackets) of performance 
indexes GD, DM, IGD, and HV obtained from each inde-
pendent operation. The better values are indicated in bold 
type. 
 This part mainly compares the GD, IGD, DM, and HV 
of MOEA/D-EHIP, MOEA/D-EHIP-ASF, and MOEA/D-
MR. The purpose of doing this is to discuss separately and 
verify the impact of these two strategies on the algorithm. It 
can be seen from the table that although MOEA/D-EHIP 
and MOEA/D-EHIP-ASF with the proposed two strategies 
are biased in each performance metric, they are better than 
MOEA/D-MR in all aspects of performance. 
 F1 is a complicated Pareto front problem with linear 
unimodal PS and a large difference in the distribution range 
of PF in each dimension. After using the EHIP, the conver-
gence of the algorithm is improved, and the diversity is also 
improved compared with MOEA/D-MR. When the ASF 
decomposition approach is added, the diversity of the algo-
rithm is further improved. For the F2 test problem where PF 
is an extremely convex piecewise linear, the convergence 
and diversity of MOEA/D-EHIP are improved compared 
with MOEA/D-MR. When the ASF decomposition ap-
proach is added, the convergence and diversity are further 
improved, which shows that for the F2 problem, the ASF 
decomposition approach improves the performance of the 
algorithm more obviously. For F3, its PF is a complicated 
Pareto front with a concave part and convex part. Similarly, 
the convergence and diversity of MOEA/D-EHIP and 
MOEA/D-EHIP-ASF are better, and the effect of MOEA/D-
EHIP is more obvious. 
 For F4 and F5 with PSs are complicated and unimodal, 
the convergence of MOEA/D-EHIP algorithm is worse than 
that of MOEA/D-EHIP-ASF, but both are better than that of 
MOEA/D-MR, which indicates that the EHIP can produce 
better solutions, which contribute to the convergence of the 
algorithm. However, after adding these two strategies, the 
diversity decreases, and the comprehensive performance 
also deteriorates, which indicates that these two strategies 
are not suitable for the test problems with PS is unimodal, 
indivisible, and complicated. 

 For F6 and F7, the convergence of MOEA/D-EHIP has 
improved more, but the diversity has decreased, while 

MOEA/D-EHIP-ASF has increased the diversity while im-
proving the convergence. Among these two strategies, the 
EHIP has a greater impact on the convergence of F6, while 
EHIP-ASF has a greater impact on the diversity of F7. 
Therefore, for F6, the comprehensive performance metrics 
IGD and HV of MOEA/D-EHIP are better than MOEA/D-
EHIP-ASF and MOEA/D-MR, while for F7, the compre-
hensive performance metrics IGD and HV of MOEA/D-
EHIP-ASF are better than MOEA/D-EHIP and MOEA/D-
MR. 

 For the two complicated optimization problems, F8 and 
F9, the EHIP has a great influence on their convergence. 
Therefore, although the diversity of MOEA/D-EHIP for F8 
is poor, the comprehensive performance is also greatly im-
proved. 

 From the above analysis, it can be seen that the EHIP 
can produce better offspring solutions, which can improve 
the convergence of the algorithm, while the effect of adding 
the ASF decomposition strategy on the diversity of the algo-
rithm is more prominent because the search range of the 
solution increases with the addition of the ASF strategy, 
leading to an increase in diversity. As can be seen from the 
table, although the ASF decomposition strategy has a great-
er improvement on the diversity of the algorithm, the strate-
gy of adding only the EHIP is superior in terms of compre-
hensive performance, which is because the impact of this 
strategy on the convergence of the above part of the problem 
is greater than the impact of the ASF decomposition strategy 
based on the nadir point on the diversity. 

3.5. Comparison with Four Competitive Algorithms 

 In order to intuitively show the superiority of the pro-
posed algorithm, the optimal front of MOEA-TDA, 
MOEA/D-DE, NSGA-III-EO, and 2REA in F1~F9 test 
problems are shown in Figs. (6-14), respectively. In Figs. 
(6-14), the red dot represents the real front, and the gray 
circle represents the optimal front after optimization. 

 From Figs. (6-14), it can be seen that the optimal front 
obtained by MOEA/D-EHIP-ASF is closer to the real front 
than the other compared algorithms and can cover almost 
the entire real front. As for MOEA-TDA, although it works 
better in solving the ZDT series and DTLZ series test prob-
lems, it is more difficult to converge in solving the compli-
cated F series test problems with extremely convex PF and 
concave PF. 2REA and NSGA-III-EO have less difference 
in optimization results compared with MOEA/D-EHIP-ASF 
when optimizing F1, F2, and F3 with linear unimodal PS. 
As for six test problems from F4 to F9, the optimization 
effect of 2REA is worse than that of MOEA/D-EHIP-ASF 
but better than that of MOEA-TDA, MOEA/D-DE, and 
NSGA-III-EO. To compare the advantages and disad-
vantages of each algorithm more objectively, the expected 
values and standard deviations (in parentheses) of the com-
prehensive performance metrics IGD and HV of MOEA/D-
EHIP-ASF, MOEA-TDA, MOEA/D-DE, NSGA-III-EO, 
and 2REA on F1 to F9 are given in Tables 8 and 9. Bold 
indicates the better values. 
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Table 4. The mean and standard deviation of GD of three algorithms on F series test set. 

Test Problems MOEA/D-EHIP MOEA/D-EHIP-ASF MOEA/D-MR 

F1 1.568E-3(1.13E-3) 1.595E-3(7.33E-4) 1.725E-3(4.71E-4) 

F2 7.297E-4(3.35E-4) 4.283E-4(1.73E-4) 7.941E-4(8.62E-4) 

F3 2.118E-4(4.50E-5) 2.255E-4(3.83E-5) 2.766E-4(1.56E-4) 

F4 4.838E-4(3.75E-4) 3.210E-4(1.27E-4) 3.978E-4(3.16E-4) 

F5 5.605E-4(4.05E-4) 2.686E-4(6.01E-5) 3.133E-4(8.47E-5) 

F6 3.064E-4(6.45E-5) 3.793E-4(1.37E-4) 4.546E-4(2.44E-4) 

F7 3.740E-4(2.04E-4) 3.745E-4(1.90E-4) 6.823E-4(4.24E-4) 

F8 1.025E-3(1.86E-5) 1.042E-3(2.07E-5) 1.064E-3(2.12E-5) 

F9 1.127E-3(3.53E-5) 1.143E-3(3.71E-5) 1.137E-3(2.68E-5) 

 
Table 5. The mean and standard deviation of DM of three algorithms on F series test set. 

Test Problems MOEA/D-EHIP MOEA/D-EHIP-ASF MOEA/D-MR 

F1 7.097E-1(1.18E-2) 7.117E-1(7.45E-3) 7.094E-1(1.79E-2) 

F2 6.837E-1(1.90E-2) 6.930E-1(1.88E-2) 6.834E-1(1.58E-2) 

F3 8.097E-1(1.72E-2) 8.085E-1(9.11E-3) 8.066E-1(1.67E-2) 

F4 8.547E-1(1.41E-2) 8.248E-1(3.49E-2) 8.555E-1(1.03E-2) 

F5 8.382E-1(1.97E-2) 8.402E-1(2.08E-2) 8.444E-1(1.52E-2) 

F6 8.476E-1(1.37E-2) 8.536E-1(1.05E-2) 8.523E-1(9.99E-3) 

F7 8.306E-1(4.73E-2) 8.521E-1(1.03E-2) 8.380E-1(9.49E-3) 

F8 7.685E-1(1.42E-2) 7.753E-1(1.39E-2) 7.723E-1(1.96E-2) 

F9 7.312E-1(2.08E-2) 7.300E-1(1.04E-2) 7.258E-1(1.19E-2) 

 

Table 6. The mean and standard deviation of IGD of three algorithms on F series test set. 

Test Problems MOEA/D-EHIP MOEA/D-EHIP-ASF MOEA/D-MR 

F1 1.925E-2(1.23E-3) 1.926E-2(7.86E-4) 1.968E-2(1.03E-3) 

F2 3.339E-3(2.39E-4) 3.326E-3(1.90E-4) 3.472E-3(2.51E-4) 

F3 3.815E-3(3.61E-4) 3.909E-3(3.58E-4) 3.949E-3(3.73E-4) 

F4 4.495E-3(1.46E-3) 8.809E-3(5.94E-3) 4.517E-3(2.71E-3) 

F5 6.537E-3(1.73E-3) 8.054E-3(3.53E-3) 6.537E-3(2.53E-3) 

F6 3.634E-3(1.67E-4) 4.542E-3(1.33E-3) 3.909E-3(8.31E-4) 

F7 9.517E-3(1.33E-2) 4.758E-3(2.20E-3) 5.342E-3(3.10E-3) 

F8 2.653E-2(8.77E-4) 2.700E-2(1.25E-3) 2.783E-2(8.46E-4) 

F9 3.803E-2(3.96E-3) 3.973E-2(3.51E-3) 4.375E-2(8.66E-3) 
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Table 7. The mean and standard deviation of HV of three algorithms on F series test set. 

Test Problems MOEA/D-EHIP MOEA/D-EHIP-ASF MOEA/D-MR 

F1 9.846E+0(9.45E-3) 9.841E+0(8.46E-3) 9.835E+0(9.27E-3) 

F2 1.156E+0(6.83E-4) 1.156E+0(5.29E-4) 1.156E+0(5.97E-4) 

F3 7.039E-1(3.09E-4) 7.037E-1(3.30E-4) 7.036E-1(5.21E-4) 

F4 8.656E-1(7.61E-3) 8.546E-1(1.76E-2) 8.658E-1(1.05E-2) 

F5 8.556E-1(1.05E-2) 8.536E-1(1.12E-2) 8.580E-1(9.30E-3) 

F6 8.700E-1(2.65E-4) 8.678E-1(2.99E-3) 8.693E-1(1.97E-3) 

F7 8.619E-1(1.66E-2) 8.677E-1(4.47E-3) 8.667E-1(5.86E-3) 

F8 3.070E-1(9.63E-4) 3.066E-1(9.08E-4) 3.051E-1(6.83E-4) 

F9 7.355E-1(1.84E-3) 7.343E-1(1.65E-3) 7.335E-1(2.97E-3) 

 

      
(a)MOEA/D-EHIP-ASF    (b)MOEA-TDA     (c)MOEA/D-DE 

  
(d)NSGA-III-EO     (e)2REA 

Fig. (6). Non-dominated solutions of five evolutionary algorithms for an F1 test problem. (A higher resolution / colour version of this figure 
is available in the electronic copy of the article). 
 
 As can be seen from the table, for the IGD performance 
metric, MOEA/D-EHIP-ASF outperformed the other com-
pared algorithms due to the use of EHIP, which produced 
better offspring solutions and promoted the convergence of 
the algorithm. Moreover, the ideal point-based TCH decom-
position strategy and the nadir point-based ASF decomposi-
tion strategy are used in the algorithm, which improves the 
diversity and distribution of the algorithm. Although the 
diversity and distribution of the algorithm are guaranteed in 
MOEA/D-MR due to the two reference points, the diversity 
of the algorithm is further improved with the addition of the 
ASF decomposition strategy based on the nadir point, indi-
cating that the ASF decomposition strategy based on the 
nadir point can improve the diversity of the algorithm. For 
the comprehensive performance metric HV, NSGA-III-EO 

is better for the multi-optimization problems with linear 
unimodal PS such as F1, F2, and F3, while MOEA/D-EHIP-
ASF is the second best, which is due to the fact that NSGA-
III-EO eliminates the worse individuals in the process of 
selecting solutions instead of selecting the better individuals 
thus ensuring convergence, which makes the comprehensive 
performance of the algorithm improve. However, NSGA-
III-EO only works well for the PS linear unimodal multi-
optimization problem but is less effective for other compli-
cated F-series test problems. The robustness of the proposed 
algorithm is also improved, as shown by the standard devia-
tions, which makes the algorithm more stable.  
 In summary, the EHIP can produce better offspring solu-
tions in the evolutionary process and largely improve the
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(a)MOEA/D-EHIP-ASF   (b)MOEA-TDA    (c)MOEA/D-DE 

  
(d)NSGA-III-EO     (e)2REA 

Fig. (7). Non-dominated solutions of five evolutionary algorithms for an F2 test problem. (A higher resolution / colour version of this figure 
is available in the electronic copy of the article). 

 

 
(a)MOEA/D-EHIP-ASF    (b)MOEA-TDA     (c)MOEA/D-DE 

   
(d)NSGA-III-EO      (e)2REA 

Fig. (8). Non-dominated solutions of five evolutionary algorithms for an F3 test problem. (A higher resolution / colour version of this figure 
is available in the electronic copy of the article). 
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(a)MOEA/D-EHIP-ASF    (b)MOEA-TDA     (c)MOEA/D-DE 

   
(d)NSGA-III-EO     (e)2REA 

Fig. (9). Non-dominated solutions of five evolutionary algorithms for an F4 test problem. (A higher resolution / colour version of this figure 
is available in the electronic copy of the article). 

 

 
(a)MOEA/D-EHIP-ASF    (b)MOEA-TDA     (c)MOEA/D-DE 

   
(d)NSGA-III-EO      (e)2REA 

Fig. (10). Non-dominated solutions of five evolutionary algorithms for an F5 test problem. (A higher resolution / colour version of this fig-
ure is available in the electronic copy of the article). 
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(a)MOEA/D-EHIP-ASF    (b)MOEA-TDA     (c)MOEA/D-DE 

   
(d)NSGA-III-EO      (e)2REA 

Fig. (11). Non-dominated solutions of five evolutionary algorithms for an F6 test problem. (A higher resolution / colour version of this fig-
ure is available in the electronic copy of the article). 

 

 

(a)MOEA/D-EHIP-ASF    (b)MOEA-TDA     (c)MOEA/D-DE 

   
(d)NSGA-III-EO      (e)2REA 

Fig. (12). Non-dominated solutions of five evolutionary algorithms for an F7 test problem. (A higher resolution / colour version of this fig-
ure is available in the electronic copy of the article). 
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(a)MOEA/D-EHIP-ASF    (b)MOEA-TDA    (c)MOEA/D-DE 

   
(d)NSGA-III-EO      (e)2REA 

Fig. (13). Non-dominated solutions of five evolutionary algorithms for an F8 test problem. (A higher resolution / colour version of this fig-
ure is available in the electronic copy of the article). 

 

 
(a)MOEA/D-EHIP-ASF    (b)MOEA-TDA     (c)MOEA/D-DE 

   
(d)NSGA-III-EO       (e)2REA 

Fig. (14). Non-dominated solutions of five evolutionary algorithms for an F9 test problem. (A higher resolution / colour version of this fig-
ure is available in the electronic copy of the article). 
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Table 8. The mean and standard deviation of IGD of five algorithms on F series test set. 

Test Problems MOEA/D-EHIP-ASF MOEA-TDA MOEA/D-DE NSGA-III-EO 2REA 

F1 1.926E-2(7.86E-4) 1.693E+0(2.02E-2) 1.461E-1(1.60E-2) 3.823E-2(1.82E-3) 1.005E-1 (5.22E-2) 

F2 3.326E-3(1.90E-4) 2.884E-1(1.74E-2) 9.806E-3(4.03E-4) 1.126E-2(1.50E-3) 4.559E-3 (2.04E-4) 

F3 3.909E-3(3.58E-4) 8.109E-2(1.45E-2) 9.072E-3(1.72E-3) 8.071E-3(1.11E-3) 7.611E-3 (1.33E-3) 

F4 8.809E-3(5.94E-3) 1.523E-1(5.06E-2) 6.016E-2(7.24E-3) 6.236E-2(1.54E-2) 6.409E-2 (1.77E-2) 

F5 8.054E-3(3.53E-3) 1.071E-1(2.34E-2) 3.292E-2(6.24E-3) 3.883E-2(6.23E-3) 3.095E-2 (3.58E-3) 

F6 4.542E-3(1.33E-3) 2.138E-1(1.08E-1) 3.515E-2(4.90E-2) 1.001E-1(2.26E-2) 1.202E-1 (2.49E-2) 

F7 4.758E-3(2.20E-3) 3.180E-1(9.61E-2) 1.622E-1(7.78E-2) 2.056E-1(6.07E-2) 2.294E-1 (7.12E-2) 

F8 2.700E-2(1.25E-3) 2.513E-1(1.21E-1) 5.821E-2(1.53E-2) 8.641E-2(4.35E-3) 9.006E-2 (3.55E-2) 

F9 3.973E-2(3.51E-3) 4.168E-1(1.18E-1) 1.644E-1(4.34E-2) 1.367E-1(1.96E-2) 1.253E-1 (1.14E-2) 

 
Table 9. The mean and standard deviation of HV of five algorithms on F series test set. 

Test Problems MOEA/D-EHIP-ASF MOEA-TDA MOEA/D-DE NSGA-III-EO 2REA 

F1 9.841E+0(8.46E-3) 7.654E+0(1.30E-1) 9.687E+0(3.07E-2) 9.915E+0(3.57E-3) 7.842E-1 (3.49E-3) 

F2 1.156E+0(5.29E-4) 9.374E-1(4.49E-2) 1.155E+0(4.16E-4) 1.158E+0(3.10E-4) 9.578E-1 (5.47E-5) 

F3 7.037E-1(3.30E-4) 5.594E-1(2.94E-2) 7.017E-1(8.60E-4) 7.068E-1(3.23E-4) 5.845E-1 (1.42E-4) 

F4 8.546E-1(1.76E-2) 6.254E-1(5.89E-2) 7.515E-1(6.39E-3) 7.388E-1(2.71E-2) 6.131E-1 (2.68E-2) 

F5 8.536E-1(1.12E-2) 6.983E-1(2.63E-2) 7.933E-1(8.91E-3) 7.855E-1(1.63E-2) 6.588E-1 (9.87E-3) 

F6 8.678E-1(2.99E-3) 5.974E-1(6.89E-2) 7.993E-1(1.01E-1) 7.100E-1(2.98E-2) 5.897E-1 (2.14E-2) 

F7 8.677E-1(4.47E-3) 4.585E-1(9.74E-2) 5.851E-1(1.22E-1) 5.662E-1(6.45E-2) 4.708E-1 (2.92E-2) 

F8 3.066E-1(9.08E-4) 1.364E-1(5.53E-2) 2.596E-1(1.78E-2) 2.201E-1(4.18E-3) 1.712E-1 (2.74E-2) 

F9 7.343E-1(1.65E-3) 3.719E-1(9.04E-2) 6.145E-1(4.71E-2) 6.132E-1(1.42E-2) 4.694E-1 (1.04E-2) 

 
convergence of the algorithm two reference points decom-
position strategy can well solve the complicated MOPs with 
extremely convex and extremely concave Pareto fronts, and 
the ASF decomposition strategy based on the nadir point 
can further improve the diversity of the algorithm. 

CONCLUSION 

 In this paper, in response to the poor quality of the off-
spring solutions generated by the traditional evolutionary 
operators and the inability of the evolutionary algorithm 
based on decomposition to better solve the multi-objective 
optimization problems with complicated Pareto fronts, this 
paper proposes a multi-objective evolutionary algorithm 
based on two reference points decomposition and historical 
information prediction. The EHIP combines linear regres-
sion prediction model and differential evolution to generate 
better quality offspring solutions based on contemporary 
and historical solutions, which improves the convergence of 
the algorithm. The TCH based on ideal point and the ASF 
based on nadir point decomposition strategies solve the mul-

ti-objective optimization problem with complicated Pareto 
front by improving the distribution and diversity. From the 
experimental results, it can be concluded that the EHIP can 
generate better quality offspring solutions, and the decom-
position strategy based on two reference points can solve the 
multi-objective optimization problems with complicated 
Pareto fronts well. 
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