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� Abstract: Artificial Intelligence (AI) is a swiftly evolving branch of technology that has been used to 
improve clinical practice, minimize errors, and boost safety and efficiency worldwide; in almost every 
field. AI is used for machine-learning algorithms and techniques to replicate human cognition in the 
assessment, display, and interpretation of complicated medical and healthcare data. AI is surfacing and 
producing a discernible shift in the healthcare system by expanding the availability of data in 
healthcare and speeding up the development of analysis tools. Additionally, AI and its applications in 
healthcare have evolved and proved to be a boon. The pharmaceutical business, health services, medi-
cal institutes, and patients, not only doctors use the applications but also dermatology, echocardiog-
raphy, surgery, and angiography are only a few applications. AI can improve healthcare systems with-
out hesitation. Automating time-consuming tasks can free up clinicians' schedules so they can encoun-
ter patients. It is causing a radical shift in healthcare, attributed to the increasing availability of 
healthcare data and the rapid advancement of advanced analytics. Screening, monitoring, and medical 
and clinical investigations are all made easier by AI. Despite some of the obstacles and limitations that 
AI faces, this new technology has enormous potential in the medical field. Regarding their reduced 
size, electronic devices have become more powerful as technology has progressed. Currently, the 
COVID – 19 pandemic is propelling the digital age to unprecedented heights. On multiple fronts, Ma-
chine Learning (ML), Deep Learning (DL), and Artificial Intelligence (AI) are being employed to 
combat the pandemic. 
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1. INTRODUCTION 

 Artificial intelligence (AI) is defined as machine intelli-
gence rather than the intelligence of an individual or other 
living species [1]. Voice recognition, robotics, and bio-
metric authentication are examples of AI-based technolo-
gies. AI is used in numerous fields, including healthcare. AI 
can help healthcare providers have a better experience by 
spending more time on direct patient care. Patients, doctors, 
and hospital executives' lives are simplified by artificial 
intelligence, which performs activities normally performed 
by people in a fraction of the time and at a fraction of the 
expenses. Electronic gadgets are becoming smaller in ap-
pearance as semiconductor technology advances, yet they 
are becoming more powerful in function. With the populari-
ty of various wearable gadgets, more data is being gathered. 
As a result, we can create various applications, including 
behaviour recognition, motion sensors, and psychological 
pressure alert. While greater data volume and kind opens up 
more application possibilities, it also necessitates more data 
processing power. Traditional data processing technologies 
cannot meet the demands of new applications. A number of 
artificial intelligence technologies have been used to process 
data with wearable technology in this scenario. With the rise  
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of deep learning in recent years, this has become increasing-
ly important [2]. Increasingly artificial intelligence technol-
ogies, such as image recognition [3], audio processing [4], 
and traffic prediction [5], are beginning to play an essential 
role in numerous industries and have achieved favourable 
performance much beyond previous approaches. Artificial 
intelligence (AI), namely machine learning (ML) and deep 
learning (DL) is being utilised to assist medical profession-
als in battling the impacts of COVID-19 on numerous 
fronts. AI can recognise trends, forecast outcomes, assist 
with ethical decisions, and help find meaningful information 
from data given the right input and unique algorithmic de-
sign [6]. 

2. ARTIFICIAL INTELLIGENCE DEVICES 

 Artificial Intelligence (AI) is a rapidly changing and 
expanding branch of technology that has helped improve 
most in every field [7]. It indicates that AI devices are di-
vided into two vital categories: The initial type has the Ma-
chine Learning (ML) technique that helps with analysing the 
structure of data for, e.g., Imaging, Genetic, and Equiva-
lence Partitioning (EP) data. ML methods are applied to use 
medical group patient features instead of estimating the like-
lihood of a virus’s manifestation [8]. Deep learning (DL) is 
the new advancement of traditional neural network tech-
niques. The basic structure of the neurons and synapses in 
the human neocortex inspired DL, a subset of ML. DL com-
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prises a multi-layered form of algorithms known as neural 
networks. Every layer consists of nodes or neurons. Many 
layers of neural networks act as filters, extracting features 
from the input (Fig. 1).

 
Fig. (1). Artificial Intelligence devices. (A higher resolution / col-
our version of this figure is available in the electronic copy of the 
article). 

 

2.1. The AI Devices: Machine Learning [ML] and Deep 
Learning (DL) 

 This section describes the Artificial Intelligence devices 
or techniques proven helpful for medical settings. They are 
classified into two types: traditional machine learning and 
deep learning techniques [9]. 

2.1.1. Classical ML 

 Machine Learning produces statistical tools that discover 
knowledge from the information gathered. Machine learning 
statistical tools are fed with clinical populations and, in 
some cases, clinical-related results. Diagnosing scans, pro-
tein expression, EP test results, physical assessment, clinical 
signs, pharmaceutics, and other disorder statistics and statis-
tical information like period, sex, and clinical history, are 
very often shown in a client's features. Patients’ health re-
sults, as well as their characteristics, are commonly collect-
ed in clinical studies. In those results are disorder indicators, 
improved survival times, and quantitative disorder tiers such 
as cancer cell diameter [10]. 
 Unsupervised and supervised learning are two types of 
machine learning that differ in incorporated outcomes. 

Semi-supervised learning is ideal for extracting features but 
chaperoned learning outcomes are used for predictive ana-
lytics [11]. 

 Modelling was performed by developing correlations 
between the patient's features as given data and the expected 
outcome as received data. In addition, the intended obtained 
results as received data. ML combines unguided and guided 
learning, showing as a boon for situations when the result of 
a particular topic is unravelled [12]. The different modes of 
supervised learning are shown in the diagram above (Fig. 2). 

2.1.2. Deep Learning: A New Era of ML  

 It can be stated as a multi-layered neural network  
(Fig. 3). The rapid growth of current computing allows for 
creating human brains with many layers, which is impossi-
ble to achieve with traditional human brains. Therefore, 
deep learning may be able to delve more through infor-
mation to find more complicated nonlinear patterns. Anoth-
er factor driving deep learning's current popularity is the 
increased amount and severity of the information. In 2016, 
there was an upsurge in the usage of this approach in medi-
cal research [13]. 

 Unlike typical neural networks, deep learning algorithms 
have more hidden layers, allowing them to handle complex 
data with various topologies [14]. Very frequently associat-
ed with DL algorithms in healthcare use are the Convolution 
Neural Network (CNN), recurrent neural network, deep be-
lief network, and deep neural network.  

 Old ML algorithms have been unable to use or see the 
HD data information with many attributes; hence CNN was 
founded. Machine Learning algorithms are constructed to 
examine information on limited digits of attributes. The 
photographic information is essentially HD because almost 
every image comprises hundreds of illuminations on display 
screens as characteristics. 

3. DISEASE FOCUS 

 Even though research in this healthcare field is rising, 
the majority is concentrated on fewer diseases: Cancer, 
nervous system disease, and cardiovascular disease (Fig 4). 
We will go over a few examples below: 

 
Fig. (2). Unsupervised, supervised, and semi-supervised learning is presented graphically. (A higher resolution / colour version of this figure 
is available in the electronic copy of the article). 
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3.1. Cancer 

 In a double-blind validation study, Somashekhar et al. 
IBM Watson for Cancer has been proven to be an effective 
method for treating tumour cells [15]. To identify skin can-
cer subgroups, Esteva et al. colleagues analysed clinical 
pictures. 

 
Fig. (4). Disease focus. (A higher resolution / colour version of this 
figure is available in the electronic copy of the article). 

 

3.2. Neurology 

 In Neurology, Bouton et al. developed an artificial intel-
ligence method to help quadriplegic individuals regain con-
trol of their movements [16]. Farina et al. examined the ef-
ficiency of a physical man or machine link, which works 

according to the topmost implant release rates of lumbar 
neurons [17]. 

3.3. Cardiology 

 In Cardiology, Dilsizian and Siegel discussed how an AI 
system could diagnose heart illness using cardiac images. 
The US FDA lately gave Artery permission to market their 
Artery Cardio DL program; based on typical cardiac MRI 
data, AI is used to produce automatic, editable ventricular 
segmentation [18]. None of that is unexpected that these 
three ailments appear to be linked. Because these three ill-
nesses are the biggest killers, getting treatment as early as 
feasible is critical to keeping the patient's condition from 
worsening. Additionally, by enhancing analytic methods on 
imaging, genomics, Equivalence Partitioning (EP), or Elec-
tronic Medical Records (EMR), which seems to be the 
strength of the Artificial Intelligence system, premature 
evaluation may be possible. AI has been primarily used to 
treat various conditions and the three primary disorders. 
Long et al. researchers diagnosed congenital cataract illness 
using ocular imaging data [19]. Also, Gulshan et al. used 
retinal fundus pictures to detect referable diabetic retinopa-
thy, two recent examples [20]. 

4. AI APPLICATION FOR STROKE  

 Heart attack is a frequent and often fatal illness that 
causes not less than 500 million people worldwide. The 
highest cause of death in China was also sixth in North 
America. It has trolled the worldwide economy by $689 
billion for healthcare bills, placing countries and families 
under threat [21, 22]. Therefore, stroke prevention and 
treatment research are critical. In the upcoming decades, 
artificial intelligence techniques are associated with an in-
creasing number of stroke-related investigations. In the 
three main regions of healthcare, prematurely cancer obser-
vation and recognition, therapy, results, and prognosis eval-

 
Fig. (3). An illustration of deep learning with multi hidden layers. (A higher resolution / colour version of this figure is available in the elec-
tronic copy of the article). 
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uation, above we summarised some of the most significant 
AI techniques [23]. 

4.1. Premature Detection and Diagnosis  

 Blood clotting in the vessel, known as cerebral infarc-
tion, causes a heart attack 85% of the time. Only a few indi-
viduals were able to receive prompt treatment due to a lack 
of recognition of early stroke symptoms. Villar et al. created 
a device that detects movement and predicts strokes early 
[24]. The two types of Machine Learning algorithms — in 
an attempt to provide such a methodology developed, the 
device was equipped with a biological blurry finite state 
machine and Patient-controlled Analgesia (PCA) [25]. The 
detection method included a phase of human detection 
and the phase of stroke onset detection. A stroke alert is 
initiated when the patient's behaviour differs from the regu-
lar pattern [26]. The sufferer is assessed as soon as possible 
for therapy. Mannini et al. proposed a smartwatch to esti-
mate stroke that gathers information on physiologic and 
pathologic gait [26]. Hidden Markov models and Support 
Vector Machine (SVM) would be used to extract and model 
the data, and the method could accurately categorize 90.5% 
of the participants to the correct category [27]. 

 Neuroimaging tools, such as MRI and CT scans are use-
ful for stroke diagnosis and illness evaluation. Certain learn-
ings have tried to use ML approaches for neuroimaging in-
formation to assist in stroke diagnosis. In nonactive func-
tional MRI data, SVM was used to identify and classify en-
dophenotypes of motor dysfunction following stroke by 
Rehme et al. [28]. With an accuracy of 87.6%, SVM can 
properly diagnose stroke patients. Griffis et al. used nave 
Bayes classification in T1-weighted MRI to identify stroke 
lesions [29]. The outcome is comparable to manual lesion 
delineation by a human specialist. In a multimodal brain 
MRI, Kamnitsas et al. used 3D CNN to separate tumours 
[30]. They have used a fully connected conditional random 
matrix framework for the last compositing of CNN's deli-
cate segmented. When Rondina et al. employed Gaussian 
mixture analysis to evaluate stroke structural medical imag-
es, they found that cluster arrangements significantly im-
proved predictive characteristics over damage amount on 
the region [31]. 
 CT scans from stroke patients have also been analysed 
using machine learning algorithms. After a stroke, a free-
floating intraluminal thrombus can become a tumour that is 
difficult to identify from the clogging of blood vessels that 
deliver blood to the brain in CT imaging. Jiang et al. col-
leagues employed two ML algorithms to categorize these 
two categories using quantitative shape analysis. The 
method's accuracy varies between 65.2% and 76.4% [32]. 

5. IMAGE-BASED DIAGNOSIS 

 Presently, mechanized medical image identification is 
perhaps a promising sector of healthcare AI technology. 
Various surgical subspecialties include radiography, oph-
thalmologist, dermatitis, and pathologists, who use image-
based diagnosis. In the following section, we will review 
recent advancements in using artificial intelligence in all 
health specialties (Fig. 5) [33]. 

 
Fig. (5). Image based diagnosis. (A higher resolution / colour ver-
sion of this figure is available in the electronic copy of the article). 

5.1. Radiology 

 Diagnostic radiology implements a variety of imaging 
modalities to diagnose illnesses, the most popular of which 
are X-ray radiation, computerized tomography, MRI, and 
positron emission tomography. Radiologists employ a col-
lection of images to search for diseases, diagnose them, pin-
point the origin of sickness and analyse the person's im-
provement over time in these operations [34]. 

5.2. Dermatology 

 Regarding detecting a variety of skin lesions, visual in-
spection is crucial. Typical skin melanoma, for example, 
includes visual characteristics that distinguish it from benign 
moles [35]. The most well-known ABCDE rule was created 
by a dermatologist as a rule of thumb for detecting skin car-
cinoma through observation. Criterion A refers to the tu-
mour’s geometric irregularity, Criterion B to irregular bor-
ders, Criterion C to pigment variegation, Criterion D to a 
dimension of 6mm or higher and Criterion E to the lesion's 
surface extension or developing tumour [36]. 

5.3. Ophthalmology 

 Retina cinematography can be defined as a technique 
that does not involve the introduction of instruments in the 
body that uses retinal cameras to take pictures of the retina, 
optic disc, and macula. It can identify and evaluate diabetic 
retinopathy, glaucoma, retina neoplasms, and age-related 
vision problems and determine the reasons for avoidable 
blindness. The American Diabetes Association's clinical 
guidelines recommend screening yearly for diabetes patients 
with mild or no damage to the retina and more regular ex-
aminations for people with progressive retinopathy [37]. 
Ophthalmologists typically inspect and interpret fundus 
(part of the eyeball opposite to the pupil images), which is 
difficult to scale to the millions of diabetes individuals at 
risk of sight-threatening [38]. 
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5.4. Pathology 

 After turning a biopsy or surgery sample into defining as 
the extraction and dyeing the slides with dye, professional 
pathologists analysed the slides underneath the microscope 
based on the visual evaluation. However, there have been 
observed differences among pathologists, and the approach 
is not easily scalable [39, 40]. 

5.5. Genome Interpretation

 Because human DNA information is always evolving, 
compared to an individual's genes, knowledge and control 
only through human filtering are difficult. In identifying 
deleterious gene mutations, deep learning models outper-
form standard methods like regression analysis and support 
vector machines [41], as well as identifying DNA activities 
that are not coded [42]. 

6. PATIENT MONITORING  

 The popularity of smartphones and fitness bands and the 
acceptance of electronic health records have provided an 
unmatched allowance for electronic information and the 
potential to employ AI to monitor individuals [43]. As a 
result, we now have unprecedented access to information 
about individuals’ sleep habits, blood pressure, the status of 
the cardiovascular system, and various vital signs. In addi-
tion to these developments, we have seen increases in vari-
ous other areas. Waveform pattern learning, for example, 
could assist hospitals in improving electrocardiograms, elec-
troencephalographs, electromyographs, and Delta ultraso-
nography monitoring and interpretation [44]. In intensive 
care units, AI-enabled software can monitor cardiovascular 
and respiratory health by interpreting vital signals. Follow-
ing a visit to the hospital, health practitioners can utilize 
automated systems using natural language processing (NLP) 
to send patients important data and rearrange appointments 
(Fig. 6) [45]. 

6.1. Different Types of Wearable Devices  

 Wearable gadgets are categorized in this section: 

6.1.1. Smart Phones  

 Many sensors are built-in smartphones that collect data 
about the user’s movements. People frequently keep their 
smartphones in their pockets, which meets data collection 

requirements. Data can be collected for various applications, 
including movement tracking, fall detection, monitoring 
older adults and patient recovery training [46]. 

6.1.2. Smart Watches and Wristbands  

 Smartwatches and wristbands are now popular, with 
various built-in sensors that track the user’s daily activities, 
calorie consumption, heart rate, and sleep quality, allowing 
them to exercise more healthily and sleep better [47]. 

6.1.3. Smart Glasses  

 Smart glasses’ recording and shooting capabilities may 
infringe on other people's privacy. Smart glasses, on the 
other hand, will not become a threat to privacy if the pur-
pose is clear and the monitor system is great, but rather a 
useful life aid and medical tool if the purpose is clear and 
the monitor system is flawless. Google, for example, is de-
veloping contact lenses with built-in sensors that can detect 
a user's blood sugar levels [48]. 

6.1.4. Smart Clothes and Socks 

 Smart garments use textiles, sensors, and collection de-
vices to collect body data from wearers, tracking exercise 
and heat consumption. Smart baby garments are also availa-
ble for infants to check their physical status [49]. 

6.1.5. Smart Shoes 

 Smart shoes typically gather user activity data to assist 
individuals’ betterment of their workout routines. Further-
more, certain smart footwear, such as Nike's Fuel Band SE, 
includes additional motion-sensing elements that urge users 
to stand up and walk around more frequently [50]. 

6.1.6. Smart Earphones  

 Smart headphones offer innovative application methods 
for, e.g., intelligent voice analysis and processing, which 
make it easier for users to manage the equipment with voice 
commands. In the future, sensors that measure heart rate, 
body temperature, and activity could be integrated directly 
into in-ear headphones [51]. 

7. DIFFERENT APPLICATIONS 

 This section will cover a few artificial intelligence and 
wearable device applications (Fig. 7).  

 

Fig. (6). Patient monitoring. (A higher resolution / colour version of this figure is available in the electronic copy of the article). 
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Fig. (7). Application of artificial intellegence. (A higher resolution 
/ colour version of this figure is available in the electronic copy of 
the article). 
 

7.1. Machine Monitoring 

 Smartwatches collect information from body parts to 
monitor falls, warn of special cases, and monitor the elderly 
to ensure that they receive the required treatment after fall-
ing, improving their quality of life and promoting healthy 
aging. 

7.2. Health Care  

 The records could also be used to decide physical state, 
health management, chronic disease management, and pre-
vention of disease for the elderly, monitor abnormal condi-
tions in patients with heart disease, and detect ear diseases 
after physiological data of the human body is collected from 
integrated embedded intelligent electronic devices or which 
directly contact the body, such as heart rate, blood pressure, 
and ear infections. Smartwatches and smartphones, for ex-
ample, are utilized to collect physiological data connected to 
Parkinson's disease for scientific treatment and monitoring 
[52]. 

7.3. Pressure Test  

 Smartphones and wristbands record information such as 
emotion, sleep patterns, fatigue, overall wellness, and liquor 
intake or adrenaline. This even gathers information about 
the individual’s interactions, such as calls and messages, 
push notifications, and digital device usage. The emotional 
trauma levels of users are assessed using a range of data 
sources [53]. 

8. ARTIFICIAL INTELLIGENCE IN MEDICAL 
ROBOTS 

 Assistive medical robots and devices are among the ap-
plications of medical AI technology. Telerobots, e.g., can 
help patients connect to healthcare personnel; assistant mov-
ing devices can aid in navigation and mimic the action of 
animals, such as robots that can communicate and keep an 
occupied individual. They are utilized to aid surgeons in 
surgery. The da Vinci Surgical System is a widely used sys-
tem of robotic surgery, with more than 3400 units in use as 
of 2015 (Fig. 8) [53]. 

8.1. Requirements of Robotics in Healthcare 

 The use of robotics and automation in healthcare and 
related sectors is increasing now more than ever. Surgical 
robot demand is expected to increase in the upcoming era, 
according to the International Federation of Robots (IFR), 

with a business worth USD 9.1 Billion predicted by 2022. 
Robots not only support doctors and healthcare experts in 
executing specific and intricate tasks but also lower their 
workload, boosting the healthcare organization’s efficiency 
[54]. 

 
Fig. (8). Artificial intelligence in medical robots. (A higher resolu-
tion / colour version of this figure is available in the electronic 
copy of the article). 

 

8.2. Dynamics and Kinematics 

 The application determines the kinematics and dynamics 
of a medical robot. Serial and parallel robots are used in 
various activities by surgical and rehabilitative robots and 
service robots click [55]. Flex Picker (ABB, Zurich, Swit-
zerland), often called the "Delta" robot, is a Parallel Kine-
matic Manipulator (PKM) that was developed for clinical 
uses but is now majorly applied in the field of the food pro-
cessing industry [56]. Most medical robotics technologies 
are ambulatory machines with a significant loading capacity 
but limited Degrees of Freedom (DOF). Medical robots with 
many variables on either side are adaptable, precise, and 
trustworthy equipment that functions like a well-trained 
human surgeon, with a minimal error range of centimetres 
or less [57]. 

8.3. Dexterity and Control  

 The control of medical robotics is a dissimilar subject 
[58] since it needs excellent precision, reliability, and re-
peatability while limiting the effects of external disturb-
ances. Furthermore, designers must give enough degrees of 
freedom (DOF) for the results to move in the logged axis by 
addressing the difficulty of control and dexterity. Cleaning, 
sterilizing, transport, nursing, rehabilitation, and surgery are 
all performed by medical robots, which utilize cutting-edge 
technology. Adaptive robust embedded controllers are often 
utilized to control and navigate such complex and nimble 
robots [59]. 
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8.4. Sterilization 

 Robots used in wellness programs and medical must be 
free of viruses that convey easily transferable and conta-
gious viruses to other victims; thus, they must be thoroughly 
cleaned [60]. The majority of surgeons and effectors are 
designed to be used once [61]. Service robots must be steri-
lized regularly to avoid becoming infective carriers. Because 
cooking robots may be washed after usage, they have their 
cleaning routine. 

8.5. Operator Security  

 This is one of the most important needs in medical ro-
botics because when working with a robot in a hospital, the 
operator's safety is critical [62]. The operator, medical staff, 
physician/surgeon, and patients should all be able to be near 
the robot within the hospital without being at risk. Surgical 
robots must adhere to the IEC 80601-2-77 standard's safety 
requirements. The IEC 80601-2-78 standard specifies the 
essential safety and performance requirements for rehabilita-
tion robots [63].

8.6. Ease of Maintenance and Handling 

 Health personnel, surgeons, and other hospital employ-
ees with no mechanical skills are trained to operate robots. 
Therefore, for the brief use of such apparatus, designers 
must constantly ensure simple architecture, easy handling, 
and quick maintenance. Healthcare service automatons help 
individuals with simulators, prosthetics, ear monitors, and 
retinal prosthetics, all of which are low-maintenance devices 
[64]. 

8.7. Requirement of Power 

 Medical robots require continuous AC/DC electricity to 
operate. Several renewable energy sources are employed to 
provide reliable electricity to medical facilities ranging in 
size from majority numbers, middle situated metropolitan 
hospitals to small hospitals [65]. Wireless power transmis-
sion for mobile robots in hospitals is also being explored to 
decrease the need for frequent recharge. 

9. CLASSIFICATION OF THE UTILIZATION OF 
ROBOTS USED FOR HEALTHCARE  

 Robots are differentiated mostly according to their use in 
medical and similar fields. The classification includes recep-
tionist robot areas, hospital nurse robot areas, ambulance 
robot areas, telemedicine robot areas, hospital serving robot 
areas, cleaning robot areas, spraying/disinfestations robot 
areas, surgical robot areas, radiologist robot areas, rehabili-
tation robot areas, food robot areas, and outdoor delivery 
robot areas (Fig. 9) [66]. 

9.1. Robots as Receptionist 

 This type of robot works best in a hospital's welcome 
area, where it may disseminate information about the hospi-
tal's various units/sections and direct patients and visitors. 
They can take care of a large group of people without grow-
ing weary and refer them to the doctor of their choice. They 
are especially enticing to hospitalized children since they 

astound them by providing exciting experiences. As a result, 
their symptoms of malaise will be reduced [65]. 

9.2. Robots as Nurses in Hospitals  

 This type of robot is designed to assist doctors like hu-
man nurses in the hospital. Robots as nurses are widely uti-
lized in hospitals in Japan, as the country has the greatest 
proportion of old people (over 75 years) among Organisa-
tion for Economic Co-operation and Development (OCED)
countries. Medical facilities in the country are facing an 
increasing problem because of this. More Japanese residents 
are socially compelled to look after aged family members at 
home instead of working due to inadequate recruitment for 
senior care [67]. Furthermore, nurses and healthcare workers 
are stressed and exhausted due to the heavy patient load. As a 
result, the Japanese government is considering technology 
alternatives to care for the country's elderly patients [68]. 

 
Fig. (9). Utilization of robots used for healthcare. (A higher resolu-
tion / colour version of this figure is available in the electronic 
copy of the article). 
 
9.3. Robots as Ambulance 

 Immediate medical attention is necessary following an 
accident to prevent the trauma from worsening. Because of 
the faster recovery, more lives can be spared. This is espe-
cially true in drowning, heart failure, shocks, and breathing 
issues. Emergency medications, cardiopulmonary resuscita-
tion (CPR), and Automated External Defibrillator (AED) 
equipment are made to be small and can convey to an emer-
gency site by a flying drone [69]. These robots can provide 
emergency treatment to a mobile or remote patient with a 
short response time. 

9.4. Robots in Telemedicine 

 These robotics are utilized in telemedicine services, in 
which a nearby doctor collects all physical data and treat-
ment of virus via audio-visual help [70]. These devices are 
especially beneficial for diseases in rural parts with few 
healthcare practitioners. 
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9.5. Serving Robots in Hospital  

 Transfer of products is essential for numerous tasks in 
hospitals. Using serving robots, these heavy-duty chores 
may be completed quickly. Robots are also used to deliver 
food to a variety of hospital patients. They are used to dis-
tribute edibles, dispense drugs and discard material to be 
washed, bring beddings, and transfer waste, among other 
things, within the hospital [71]. 

9.6. Cleaning Robots  

 Vacuuming and/or mopping robots are utilized in clean-
ing. They are also used for sanitizing hospital environments 
that appear capable of delivering the needed non-industrial 
robot system inventors predicted years ago. These robots 
sanitize hospitals and eliminate bacteria and pesticides [72].  

9.7. Robots Used for Spraying/Disinfestations  

 They are commonly employed to spray antiseptic con-
coctions over vast outdoor areas, such as city residential 
neighbourhoods. Such robots are being controlled remotely 
to avoid dangerous interaction with the antibacterial mist. 
Hand sanitizer spraying robots with autonomous directions 
are being created to prevent diseases on individuals’ hands 
and faces. Alcohol-based sanitizers prevent infection, para-
sites, and other microorganisms and minimize the transmis-
sion of infectious agents among many individuals [73]. 

9.8. Surgical Robots  

 Compared to human surgeons, surgical robots provide 
precise and accurate minimally invasive surgery (MIS). For 
remote surgery, many teleoperators have been developed 
[74]. Fourth-generation Da Vinci surgical systems (Intuitive 
Surgical, California, USA) continue to advance MIS across 
many surgical methods. For surgeons utilizing Da Vinci 
systems, this provides an upgradeable design with variable 
setups and a trustworthy interface. Instrument and compo-
nent standardization aids hospital inventory management 
and efficiency [75]. 

9.9. Radiologist Robots  

 Radiography is indeed one of the advanced components 
wherein robotics is employed with a greater reliance due to 
high levels of radiation and safety concerns for system in-
teraction. The Siemens Twin Robotic X-ray [76]. Siemens 
Healthineers, Henkestr, Germany, is a radiology device that 
can perform imaging techniques, angioplasty, and 3D pho-
tography [77]. It can do a variety of X-rays in the same 
room, and the surgeon can watch 3D visual information as 
the motor is running rather than just the patient. A computed 
tomography (CT) 3D scan is essential to confirm the diag-
nosis because typical 2D X-rays frequently overlook small 
cosmetic cracks inside the marrow. The MultitomRax Twin 
Robotic X-ray system can collect a 3D image on the same 
system, eliminating the need for a CT system [78]. 

9.10. Rehabilitation Robots 

 The machines can be beneficial for the recovery of indi-
viduals who have had an accident or have had a stroke [79]. 
It can be useful in helping and caring for persons who are 

paralyzed, old, or in awkward situations. The machines en-
courage serviceable reorganization, recompense, and nerv-
ous system rejuvenation, which successfully reduces muscle 
wither. Hence, helpers are relieved of arduous work, allow-
ing healthcare resources to be better utilized. 

9.11. Food Robots  

 These machines are essential to a clinic's cafeteria and 
storage, ensuring that elevated food is delivered by hygiene 
requirements. Robots have devised a variety of mechaniza-
tion and autonomous systems, ranging from dining to ser-
vice. In Mandarin hospitals, a robotic cook is in use. In the 
hospital cafeteria, waiting robots will bring the food. Cookie 
(Sereneti Kitchen, Atlanta, Georgia, United States) and 
Moley (Moley Robotics, London, United Kingdom) are two 
different types of culinary robots having one and two robot-
ic hands, respectively [80]. 

9.12. Outdoor Delivery Robots  

 The delivery robots are used in transporting/delivering 
drugs and blood samples to/from the hospital. These fully 
autonomous robots can operate on the ground or in the air 
autonomously or with the man-in-the-loop operation, 
whereas an operator at a distance can remotely control them 
[81]. 

 Starship robots (San Francisco, USA) are another exam-
ple of surface delivery robots that can transport things 
weighing below 100 pounds within a 4-mile (6-kilometer) 
radius. Pharmaceuticals, packages, foodstuffs, and meals are 
among the places of interest, shipped from clinics and re-
tailers by orders placed by customers using a smartphone 
app. The robot's whole travel and whereabouts are tracked 
on a cell phone when the order has been placed. 

 Additionally, an electronic barrier is employed to lock 
the cargo compartment across the journey to assure secure 
delivery. The mobile phone app is used to open it at the us-
er's end [82]. 

10. ARTIFICIAL INTELLIGENCE IN COVID-19 
PANDEMIC  

 Artificial intelligence (AI) is another such thing that 
could help monitor the virus spread, identify and prioritize 
individuals, and control infections in real-time [83]. Thor-
oughly assessing the patient’s historical data may also fore-
cast mortality risk. By offering public screening, medical 
aid, notification, and infection management advice, AI can 
help us tackle this virus [84]. 

10.1. Important Applications of AI in the COVID-19 
Pandemic  

10.1.1. Early Detection and Diagnosis of the Infection 

 A computer program can easily detect abnormal symp-
toms and other ‘risk factors, warning patients and medical 
workers [85]. It facilitates premium decision-making by 
allowing for speedier decision-making. It aids in the con-
struction of fresh COVID 19 diagnostics and government 
policymakers employing relevant algorithms (Fig. 10). 
Medical imaging technologies such as computed tomogra-
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phy (CT) and magnetic resonance imaging (MRI) scans of 
human body sections can help AI aid in the diagnosis of 
infected individuals [65, 86]. 

 
Fig. (10). Artificial intelligence in COVID-19 pandemic. (A higher 
resolution / colour version of this figure is available in the elec-
tronic copy of the article). 

 

10.1.2. Monitoring Treatment 

 AI could create a firm foundation for identity and epi-
demic prediction. The visual aspects of this sickness could 
be extracted using a neural network, leading to greater eval-
uation and treatment of those impacted [87]. 
10.1.3. Contact Tracing of Individuals  

 Intelligence can help determine the bacteria's contamina-
tion rate, detect groups & ‘hot spots, and successfully sur-
veil individual contacts. It can predict how the sickness will 
progress later and whether or not it will return [88]. 
10.1.4. Projection of Cases and Mortality 

 This system can track and anticipate the virus character-
istics, the risks of infection and its expected propagation 
using existing data, social media, and media outlets. This 
can forecast the number of positive cases and deaths in a 
particular area. AI can assist in identifying its most suscep-
tible regions, individuals, and nations to take appropriate 
action [89]. 
10.1.5. Development of Drugs and Vaccines 

 AI can help in drug research by analysing beforehand 
data on COVID-19. It could be used to generate fresh medi-
cine delivery methods. When traditional testing takes a long 
time, this technology is utilized to speed up drug screening 
in real-time, which helps to greatly speed up a procedure 
that would be impossible for a human to accomplish. It has 
the potential to aid in the establishment of better COVID-19 
treatments. It has become an effective component in creat-
ing medical techniques and immunizations. C-S66 AI accel-
erates vaccine and treatment development and drug testing 
during vaccine development [90]. 

CONCLUSION 

• AI has improved clinical diagnostic and decision-
making performance in various medical task catego-
ries.  

• AI is intended to aid in investigating considerably 
more complex but closer-to-real-life clinical con-
cerns, resulting in better stroke care decision-making. 
Recently, researchers have begun work on this ap-
proach, with promising preliminary results. 

• Artificial Intelligence-based algorithms can provide 
accurate early warning and assist specialists in de-
veloping and implementing effective illness diagnos-
tic, control, and preventive measures.  

• Rapid breakthroughs in AI research and the resources 
offered by governments and businesses make it high-
ly likely that AI will be widely applied in healthcare 
delivery, with enormous cost-cutting and service 
quality enhancement possibilities. 

• While inspiring and driving innovation in the field, 
AI is created and applied in a transparent and public-
interest-friendly manner. Patients with COVID-19 
can benefit from AI-assisted treatment and reliable 
health monitoring.  

• It can track the COVID-19 outbreak on various di-
mensions, including medical, molecular, and epide-
miological data. It is also advantageous to make viral 
research easier by analysing existing data.  

• AI can help in the discovery of pharmaceuticals and 
vaccines, as well as the establishment of successful 
treatment regimens and prevention measures.  

LIST OF ABBREVIATIONS 

AED = Automated External Defibrillator  
AI = Artificial Intelligence  
CNN = Convolution Neural Network  
CPR = Cardiopulmonary Resuscitation  
CT = Computed Tomography  
DI = Deep Learning  
DL = Deep Learning  
DOF = Degrees of Freedom  
EMR = Electronic Medical Records  
EP = Equivalence Partitioning  
IFR = International Federation of Robots  
MI = Machine Learning  
MIS = Minimally Invasive Surgery  
ML = Machine Learning  
MRI = Magnetic Resonance Imaging  
NLP = Natural Language Processing  
PCA = Patient-Controlled Analgesia  
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